Spaces:
Sleeping
Sleeping
Update routers/donut_inference.py
Browse files- routers/donut_inference.py +25 -7
routers/donut_inference.py
CHANGED
@@ -7,10 +7,11 @@ from functools import lru_cache
|
|
7 |
import os
|
8 |
|
9 |
|
10 |
-
@lru_cache(maxsize=
|
11 |
-
def load_model():
|
12 |
-
|
13 |
-
|
|
|
14 |
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
model.to(device)
|
@@ -18,20 +19,37 @@ def load_model():
|
|
18 |
return processor, model, device
|
19 |
|
20 |
|
21 |
-
def process_document_donut(image):
|
22 |
worker_pid = os.getpid()
|
23 |
print(f"Handling inference request with worker PID: {worker_pid}")
|
24 |
|
25 |
start_time = time.time()
|
26 |
|
27 |
-
processor, model, device = load_model()
|
28 |
|
29 |
# prepare encoder inputs
|
30 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
31 |
|
32 |
# prepare decoder inputs
|
33 |
task_prompt = "<s_cord-v2>"
|
34 |
-
decoder_input_ids = processor.tokenizer(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# generate answer
|
37 |
outputs = model.generate(
|
|
|
7 |
import os
|
8 |
|
9 |
|
10 |
+
@lru_cache(maxsize=10)
|
11 |
+
def load_model(shipper_id: str):
|
12 |
+
temp_settings = Settings(shipper_id=shipper_id)
|
13 |
+
processor = DonutProcessor.from_pretrained(temp_settings.processor)
|
14 |
+
model = VisionEncoderDecoderModel.from_pretrained(temp_settings.model)
|
15 |
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
model.to(device)
|
|
|
19 |
return processor, model, device
|
20 |
|
21 |
|
22 |
+
def process_document_donut(image, shipper_id="default_shipper"):
|
23 |
worker_pid = os.getpid()
|
24 |
print(f"Handling inference request with worker PID: {worker_pid}")
|
25 |
|
26 |
start_time = time.time()
|
27 |
|
28 |
+
processor, model, device = load_model(shipper_id)
|
29 |
|
30 |
# prepare encoder inputs
|
31 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
32 |
|
33 |
# prepare decoder inputs
|
34 |
task_prompt = "<s_cord-v2>"
|
35 |
+
decoder_input_ids = processor.tokenizer(
|
36 |
+
task_prompt,
|
37 |
+
add_special_tokens=False,
|
38 |
+
return_tensors="pt"
|
39 |
+
).input_ids
|
40 |
+
|
41 |
+
outputs = model.generate(
|
42 |
+
pixel_values.to(device),
|
43 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
44 |
+
max_length=model.decoder.config.max_position_embeddings,
|
45 |
+
early_stopping=True,
|
46 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
47 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
48 |
+
use_cache=True,
|
49 |
+
num_beams=1,
|
50 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
51 |
+
return_dict_in_generate=True,
|
52 |
+
)
|
53 |
|
54 |
# generate answer
|
55 |
outputs = model.generate(
|