serenarolloh commited on
Commit
d540d78
·
verified ·
1 Parent(s): 3eaed1b

Update routers/donut_inference.py

Browse files
Files changed (1) hide show
  1. routers/donut_inference.py +24 -21
routers/donut_inference.py CHANGED
@@ -2,42 +2,46 @@ import re
2
  import time
3
  import torch
4
  from transformers import DonutProcessor, VisionEncoderDecoderModel
5
- from config import settings
6
- from functools import lru_cache
7
  import os
8
 
 
 
9
 
10
- @lru_cache(maxsize=1)
11
- def load_model():
12
- processor = DonutProcessor.from_pretrained(settings.processor)
13
- model = VisionEncoderDecoderModel.from_pretrained(settings.model)
14
 
15
- device = "cuda" if torch.cuda.is_available() else "cpu"
16
- model.to(device)
 
 
 
 
 
 
 
17
 
18
- return processor, model, device
19
 
20
 
21
  def process_document_donut(image, settings):
22
- processor = settings.processor
23
- model = settings.model
24
- # to load processor and model dynamically
25
 
26
  worker_pid = os.getpid()
27
  print(f"Handling inference request with worker PID: {worker_pid}")
28
 
29
  start_time = time.time()
30
 
31
- processor, model, device = load_model()
32
 
33
- # prepare encoder inputs
34
  pixel_values = processor(image, return_tensors="pt").pixel_values
35
 
36
- # prepare decoder inputs
37
  task_prompt = "<s_cord-v2>"
38
  decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
39
 
40
- # generate answer
41
  outputs = model.generate(
42
  pixel_values.to(device),
43
  decoder_input_ids=decoder_input_ids.to(device),
@@ -51,14 +55,13 @@ def process_document_donut(image, settings):
51
  return_dict_in_generate=True,
52
  )
53
 
54
- # postprocess
55
  sequence = processor.batch_decode(outputs.sequences)[0]
56
  sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
57
- sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
58
 
59
- end_time = time.time()
60
- processing_time = end_time - start_time
61
 
62
  print(f"Inference done, worker PID: {worker_pid}")
63
 
64
- return processor.token2json(sequence), processing_time
 
2
  import time
3
  import torch
4
  from transformers import DonutProcessor, VisionEncoderDecoderModel
 
 
5
  import os
6
 
7
+ # Cache model and processor objects based on their path
8
+ _model_cache = {}
9
 
10
+ def load_model(processor_path: str, model_path: str):
11
+ key = (processor_path, model_path)
 
 
12
 
13
+ if key not in _model_cache:
14
+ print(f"Loading new model: {model_path}")
15
+ processor = DonutProcessor.from_pretrained(processor_path)
16
+ model = VisionEncoderDecoderModel.from_pretrained(model_path)
17
+ device = "cuda" if torch.cuda.is_available() else "cpu"
18
+ model.to(device)
19
+ _model_cache[key] = (processor, model, device)
20
+ else:
21
+ print(f"Using cached model: {model_path}")
22
 
23
+ return _model_cache[key]
24
 
25
 
26
  def process_document_donut(image, settings):
27
+ processor_path = settings.processor
28
+ model_path = settings.model
 
29
 
30
  worker_pid = os.getpid()
31
  print(f"Handling inference request with worker PID: {worker_pid}")
32
 
33
  start_time = time.time()
34
 
35
+ processor, model, device = load_model(processor_path, model_path)
36
 
37
+ # Prepare encoder inputs
38
  pixel_values = processor(image, return_tensors="pt").pixel_values
39
 
40
+ # Prepare decoder inputs
41
  task_prompt = "<s_cord-v2>"
42
  decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
43
 
44
+ # Generate output
45
  outputs = model.generate(
46
  pixel_values.to(device),
47
  decoder_input_ids=decoder_input_ids.to(device),
 
55
  return_dict_in_generate=True,
56
  )
57
 
58
+ # Postprocess
59
  sequence = processor.batch_decode(outputs.sequences)[0]
60
  sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
61
+ sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()
62
 
63
+ processing_time = time.time() - start_time
 
64
 
65
  print(f"Inference done, worker PID: {worker_pid}")
66
 
67
+ return processor.token2json(sequence), processing_time