Spaces:
Sleeping
Sleeping
Update routers/donut_inference.py
Browse files- routers/donut_inference.py +24 -21
routers/donut_inference.py
CHANGED
@@ -2,42 +2,46 @@ import re
|
|
2 |
import time
|
3 |
import torch
|
4 |
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
5 |
-
from config import settings
|
6 |
-
from functools import lru_cache
|
7 |
import os
|
8 |
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
processor = DonutProcessor.from_pretrained(settings.processor)
|
13 |
-
model = VisionEncoderDecoderModel.from_pretrained(settings.model)
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
return
|
19 |
|
20 |
|
21 |
def process_document_donut(image, settings):
|
22 |
-
|
23 |
-
|
24 |
-
# to load processor and model dynamically
|
25 |
|
26 |
worker_pid = os.getpid()
|
27 |
print(f"Handling inference request with worker PID: {worker_pid}")
|
28 |
|
29 |
start_time = time.time()
|
30 |
|
31 |
-
processor, model, device = load_model()
|
32 |
|
33 |
-
#
|
34 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
35 |
|
36 |
-
#
|
37 |
task_prompt = "<s_cord-v2>"
|
38 |
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
39 |
|
40 |
-
#
|
41 |
outputs = model.generate(
|
42 |
pixel_values.to(device),
|
43 |
decoder_input_ids=decoder_input_ids.to(device),
|
@@ -51,14 +55,13 @@ def process_document_donut(image, settings):
|
|
51 |
return_dict_in_generate=True,
|
52 |
)
|
53 |
|
54 |
-
#
|
55 |
sequence = processor.batch_decode(outputs.sequences)[0]
|
56 |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
57 |
-
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()
|
58 |
|
59 |
-
|
60 |
-
processing_time = end_time - start_time
|
61 |
|
62 |
print(f"Inference done, worker PID: {worker_pid}")
|
63 |
|
64 |
-
return processor.token2json(sequence), processing_time
|
|
|
2 |
import time
|
3 |
import torch
|
4 |
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
|
|
|
|
5 |
import os
|
6 |
|
7 |
+
# Cache model and processor objects based on their path
|
8 |
+
_model_cache = {}
|
9 |
|
10 |
+
def load_model(processor_path: str, model_path: str):
|
11 |
+
key = (processor_path, model_path)
|
|
|
|
|
12 |
|
13 |
+
if key not in _model_cache:
|
14 |
+
print(f"Loading new model: {model_path}")
|
15 |
+
processor = DonutProcessor.from_pretrained(processor_path)
|
16 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_path)
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
model.to(device)
|
19 |
+
_model_cache[key] = (processor, model, device)
|
20 |
+
else:
|
21 |
+
print(f"Using cached model: {model_path}")
|
22 |
|
23 |
+
return _model_cache[key]
|
24 |
|
25 |
|
26 |
def process_document_donut(image, settings):
|
27 |
+
processor_path = settings.processor
|
28 |
+
model_path = settings.model
|
|
|
29 |
|
30 |
worker_pid = os.getpid()
|
31 |
print(f"Handling inference request with worker PID: {worker_pid}")
|
32 |
|
33 |
start_time = time.time()
|
34 |
|
35 |
+
processor, model, device = load_model(processor_path, model_path)
|
36 |
|
37 |
+
# Prepare encoder inputs
|
38 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
39 |
|
40 |
+
# Prepare decoder inputs
|
41 |
task_prompt = "<s_cord-v2>"
|
42 |
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
43 |
|
44 |
+
# Generate output
|
45 |
outputs = model.generate(
|
46 |
pixel_values.to(device),
|
47 |
decoder_input_ids=decoder_input_ids.to(device),
|
|
|
55 |
return_dict_in_generate=True,
|
56 |
)
|
57 |
|
58 |
+
# Postprocess
|
59 |
sequence = processor.batch_decode(outputs.sequences)[0]
|
60 |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
61 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()
|
62 |
|
63 |
+
processing_time = time.time() - start_time
|
|
|
64 |
|
65 |
print(f"Inference done, worker PID: {worker_pid}")
|
66 |
|
67 |
+
return processor.token2json(sequence), processing_time
|