Spaces:
Sleeping
Sleeping
Update endpoints.py
Browse files- endpoints.py +3 -71
endpoints.py
CHANGED
@@ -1,18 +1,10 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
-
from typing import Optional
|
4 |
-
from PIL import Image
|
5 |
-
import urllib.request
|
6 |
-
from io import BytesIO
|
7 |
-
import json
|
8 |
-
from config import settings
|
9 |
-
import utils
|
10 |
from routers import inference, training
|
11 |
-
from routers.donut_inference import process_document_donut
|
12 |
from huggingface_hub import login
|
|
|
13 |
import os
|
14 |
-
|
15 |
-
# Login using Hugging Face token from environment
|
16 |
login(os.getenv("HUGGINGFACE_KEY"))
|
17 |
|
18 |
app = FastAPI(openapi_url="/api/v1/sparrow-ml/openapi.json", docs_url="/api/v1/sparrow-ml/docs")
|
@@ -28,66 +20,6 @@ app.add_middleware(
|
|
28 |
app.include_router(inference.router, prefix="/api-inference/v1/sparrow-ml", tags=["Inference"])
|
29 |
app.include_router(training.router, prefix="/api-training/v1/sparrow-ml", tags=["Training"])
|
30 |
|
31 |
-
router = APIRouter()
|
32 |
-
|
33 |
-
def count_values(obj):
|
34 |
-
if isinstance(obj, dict):
|
35 |
-
return sum(count_values(v) for v in obj.values())
|
36 |
-
elif isinstance(obj, list):
|
37 |
-
return sum(count_values(i) for i in obj)
|
38 |
-
else:
|
39 |
-
return 1
|
40 |
-
|
41 |
-
@router.post("/inference")
|
42 |
-
async def run_inference(
|
43 |
-
file: Optional[UploadFile] = File(None),
|
44 |
-
image_url: Optional[str] = Form(None),
|
45 |
-
shipper_id: int = Form(...),
|
46 |
-
model_in_use: str = Form('donut')
|
47 |
-
):
|
48 |
-
result = []
|
49 |
-
|
50 |
-
# Dynamically select model
|
51 |
-
model_url = settings.get_model_url(shipper_id)
|
52 |
-
model_name = model_url.replace("https://huggingface.co/spaces/", "")
|
53 |
-
print(f"[DEBUG] Using model: {model_name}")
|
54 |
-
|
55 |
-
if file:
|
56 |
-
if file.content_type not in ["image/jpeg", "image/jpg"]:
|
57 |
-
return {"error": "Invalid file type. Only JPG images are allowed."}
|
58 |
-
|
59 |
-
image = Image.open(BytesIO(await file.read()))
|
60 |
-
result, processing_time = process_document_donut(image, model_url)
|
61 |
-
utils.log_stats(settings.inference_stats_file, [processing_time, count_values(result), file.filename, model_name])
|
62 |
-
print(f"Processing time: {processing_time:.2f} seconds")
|
63 |
-
|
64 |
-
elif image_url:
|
65 |
-
with urllib.request.urlopen(image_url) as url:
|
66 |
-
image = Image.open(BytesIO(url.read()))
|
67 |
-
|
68 |
-
result, processing_time = process_document_donut(image, model_url)
|
69 |
-
file_name = image_url.split("/")[-1]
|
70 |
-
utils.log_stats(settings.inference_stats_file, [processing_time, count_values(result), file_name, model_name])
|
71 |
-
print(f"Processing time inference: {processing_time:.2f} seconds")
|
72 |
-
|
73 |
-
else:
|
74 |
-
result = {"info": "No input provided"}
|
75 |
-
|
76 |
-
return result
|
77 |
-
|
78 |
-
@router.get("/statistics")
|
79 |
-
async def get_statistics():
|
80 |
-
file_path = settings.inference_stats_file
|
81 |
-
if os.path.exists(file_path):
|
82 |
-
with open(file_path, 'r') as file:
|
83 |
-
try:
|
84 |
-
content = json.load(file)
|
85 |
-
except json.JSONDecodeError:
|
86 |
-
content = []
|
87 |
-
else:
|
88 |
-
content = []
|
89 |
-
return content
|
90 |
-
|
91 |
@app.get("/")
|
92 |
async def root():
|
93 |
return {"message": "Senga delivery notes inferencing"}
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from routers import inference, training
|
|
|
4 |
from huggingface_hub import login
|
5 |
+
from config import settings
|
6 |
import os
|
7 |
+
# login(settings.huggingface_key)
|
|
|
8 |
login(os.getenv("HUGGINGFACE_KEY"))
|
9 |
|
10 |
app = FastAPI(openapi_url="/api/v1/sparrow-ml/openapi.json", docs_url="/api/v1/sparrow-ml/docs")
|
|
|
20 |
app.include_router(inference.router, prefix="/api-inference/v1/sparrow-ml", tags=["Inference"])
|
21 |
app.include_router(training.router, prefix="/api-training/v1/sparrow-ml", tags=["Training"])
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
@app.get("/")
|
24 |
async def root():
|
25 |
return {"message": "Senga delivery notes inferencing"}
|