Spaces:
Runtime error
Runtime error
# Copyright (C) 2022-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# -------------------------------------------------------- | |
# Main training function | |
# -------------------------------------------------------- | |
import argparse | |
import datetime | |
import json | |
import os | |
import sys | |
import time | |
import numpy as np | |
import torch | |
import torch.backends.cudnn as cudnn | |
import torch.distributed as dist | |
import torchvision.datasets as datasets | |
import torchvision.transforms as transforms | |
import utils | |
import utils.misc as misc | |
from models.croco_downstream import CroCoDownstreamBinocular, croco_args_from_ckpt | |
from models.head_downstream import PixelwiseTaskWithDPT | |
from models.pos_embed import interpolate_pos_embed | |
from stereoflow.criterion import * | |
from stereoflow.datasets_flow import get_test_datasets_flow, get_train_dataset_flow | |
from stereoflow.datasets_stereo import ( | |
get_test_datasets_stereo, | |
get_train_dataset_stereo, | |
) | |
from stereoflow.engine import train_one_epoch, validate_one_epoch | |
from torch.utils.data import DataLoader | |
from torch.utils.tensorboard import SummaryWriter | |
from utils.misc import NativeScalerWithGradNormCount as NativeScaler | |
def get_args_parser(): | |
# prepare subparsers | |
parser = argparse.ArgumentParser( | |
"Finetuning CroCo models on stereo or flow", add_help=False | |
) | |
subparsers = parser.add_subparsers( | |
title="Task (stereo or flow)", dest="task", required=True | |
) | |
parser_stereo = subparsers.add_parser("stereo", help="Training stereo model") | |
parser_flow = subparsers.add_parser("flow", help="Training flow model") | |
def add_arg( | |
name_or_flags, default=None, default_stereo=None, default_flow=None, **kwargs | |
): | |
if default is not None: | |
assert ( | |
default_stereo is None and default_flow is None | |
), "setting default makes default_stereo and default_flow disabled" | |
parser_stereo.add_argument( | |
name_or_flags, | |
default=default if default is not None else default_stereo, | |
**kwargs, | |
) | |
parser_flow.add_argument( | |
name_or_flags, | |
default=default if default is not None else default_flow, | |
**kwargs, | |
) | |
# output dir | |
add_arg( | |
"--output_dir", | |
required=True, | |
type=str, | |
help="path where to save, if empty, automatically created", | |
) | |
# model | |
add_arg( | |
"--crop", | |
type=int, | |
nargs="+", | |
default_stereo=[352, 704], | |
default_flow=[320, 384], | |
help="size of the random image crops used during training.", | |
) | |
add_arg( | |
"--pretrained", | |
required=True, | |
type=str, | |
help="Load pretrained model (required as croco arguments come from there)", | |
) | |
# criterion | |
add_arg( | |
"--criterion", | |
default_stereo="LaplacianLossBounded2()", | |
default_flow="LaplacianLossBounded()", | |
type=str, | |
help="string to evaluate to get criterion", | |
) | |
add_arg("--bestmetric", default_stereo="avgerr", default_flow="EPE", type=str) | |
# dataset | |
add_arg("--dataset", type=str, required=True, help="training set") | |
# training | |
add_arg("--seed", default=0, type=int, help="seed") | |
add_arg( | |
"--batch_size", | |
default_stereo=6, | |
default_flow=8, | |
type=int, | |
help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus", | |
) | |
add_arg("--epochs", default=32, type=int, help="number of training epochs") | |
add_arg( | |
"--img_per_epoch", | |
type=int, | |
default=None, | |
help="Fix the number of images seen in an epoch (None means use all training pairs)", | |
) | |
add_arg( | |
"--accum_iter", | |
default=1, | |
type=int, | |
help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)", | |
) | |
add_arg( | |
"--weight_decay", type=float, default=0.05, help="weight decay (default: 0.05)" | |
) | |
add_arg( | |
"--lr", | |
type=float, | |
default_stereo=3e-5, | |
default_flow=2e-5, | |
metavar="LR", | |
help="learning rate (absolute lr)", | |
) | |
add_arg( | |
"--min_lr", | |
type=float, | |
default=0.0, | |
metavar="LR", | |
help="lower lr bound for cyclic schedulers that hit 0", | |
) | |
add_arg( | |
"--warmup_epochs", type=int, default=1, metavar="N", help="epochs to warmup LR" | |
) | |
add_arg( | |
"--optimizer", | |
default="AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))", | |
type=str, | |
help="Optimizer from torch.optim [ default: AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) ]", | |
) | |
add_arg( | |
"--amp", | |
default=0, | |
type=int, | |
choices=[0, 1], | |
help="enable automatic mixed precision training", | |
) | |
# validation | |
add_arg( | |
"--val_dataset", | |
type=str, | |
default="", | |
help="Validation sets, multiple separated by + (empty string means that no validation is performed)", | |
) | |
add_arg( | |
"--tile_conf_mode", | |
type=str, | |
default_stereo="conf_expsigmoid_15_3", | |
default_flow="conf_expsigmoid_10_5", | |
help="Weights for tile aggregation", | |
) | |
add_arg( | |
"--val_overlap", default=0.7, type=float, help="Overlap value for the tiling" | |
) | |
# others | |
add_arg("--num_workers", default=8, type=int) | |
add_arg("--eval_every", type=int, default=1, help="Val loss evaluation frequency") | |
add_arg("--save_every", type=int, default=1, help="Save checkpoint frequency") | |
add_arg( | |
"--start_from", | |
type=str, | |
default=None, | |
help="Start training using weights from an other model (eg for finetuning)", | |
) | |
add_arg( | |
"--tboard_log_step", | |
type=int, | |
default=100, | |
help="Log to tboard every so many steps", | |
) | |
add_arg( | |
"--dist_url", default="env://", help="url used to set up distributed training" | |
) | |
return parser | |
def main(args): | |
misc.init_distributed_mode(args) | |
global_rank = misc.get_rank() | |
num_tasks = misc.get_world_size() | |
assert os.path.isfile(args.pretrained) | |
print("output_dir: " + args.output_dir) | |
os.makedirs(args.output_dir, exist_ok=True) | |
# fix the seed for reproducibility | |
seed = args.seed + misc.get_rank() | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
cudnn.benchmark = True | |
# Metrics / criterion | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
metrics = (StereoMetrics if args.task == "stereo" else FlowMetrics)().to(device) | |
criterion = eval(args.criterion).to(device) | |
print("Criterion: ", args.criterion) | |
# Prepare model | |
assert os.path.isfile(args.pretrained) | |
ckpt = torch.load(args.pretrained, "cpu") | |
croco_args = croco_args_from_ckpt(ckpt) | |
croco_args["img_size"] = (args.crop[0], args.crop[1]) | |
print("Croco args: " + str(croco_args)) | |
args.croco_args = croco_args # saved for test time | |
# prepare head | |
num_channels = {"stereo": 1, "flow": 2}[args.task] | |
if criterion.with_conf: | |
num_channels += 1 | |
print(f"Building head PixelwiseTaskWithDPT() with {num_channels} channel(s)") | |
head = PixelwiseTaskWithDPT() | |
head.num_channels = num_channels | |
# build model and load pretrained weights | |
model = CroCoDownstreamBinocular(head, **croco_args) | |
interpolate_pos_embed(model, ckpt["model"]) | |
msg = model.load_state_dict(ckpt["model"], strict=False) | |
print(msg) | |
total_params = sum(p.numel() for p in model.parameters()) | |
total_params_trainable = sum( | |
p.numel() for p in model.parameters() if p.requires_grad | |
) | |
print(f"Total params: {total_params}") | |
print(f"Total params trainable: {total_params_trainable}") | |
model_without_ddp = model.to(device) | |
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() | |
print("lr: %.2e" % args.lr) | |
print("accumulate grad iterations: %d" % args.accum_iter) | |
print("effective batch size: %d" % eff_batch_size) | |
if args.distributed: | |
model = torch.nn.parallel.DistributedDataParallel( | |
model, device_ids=[args.gpu], static_graph=True | |
) | |
model_without_ddp = model.module | |
# following timm: set wd as 0 for bias and norm layers | |
param_groups = misc.get_parameter_groups(model_without_ddp, args.weight_decay) | |
optimizer = eval(f"torch.optim.{args.optimizer}") | |
print(optimizer) | |
loss_scaler = NativeScaler() | |
# automatic restart | |
last_ckpt_fname = os.path.join(args.output_dir, f"checkpoint-last.pth") | |
args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None | |
if not args.resume and args.start_from: | |
print(f"Starting from an other model's weights: {args.start_from}") | |
best_so_far = None | |
args.start_epoch = 0 | |
ckpt = torch.load(args.start_from, "cpu") | |
msg = model_without_ddp.load_state_dict(ckpt["model"], strict=False) | |
print(msg) | |
else: | |
best_so_far = misc.load_model( | |
args=args, | |
model_without_ddp=model_without_ddp, | |
optimizer=optimizer, | |
loss_scaler=loss_scaler, | |
) | |
if best_so_far is None: | |
best_so_far = np.inf | |
# tensorboard | |
log_writer = None | |
if global_rank == 0 and args.output_dir is not None: | |
log_writer = SummaryWriter( | |
log_dir=args.output_dir, purge_step=args.start_epoch * 1000 | |
) | |
# dataset and loader | |
print("Building Train Data loader for dataset: ", args.dataset) | |
train_dataset = ( | |
get_train_dataset_stereo if args.task == "stereo" else get_train_dataset_flow | |
)(args.dataset, crop_size=args.crop) | |
def _print_repr_dataset(d): | |
if isinstance(d, torch.utils.data.dataset.ConcatDataset): | |
for dd in d.datasets: | |
_print_repr_dataset(dd) | |
else: | |
print(repr(d)) | |
_print_repr_dataset(train_dataset) | |
print(" total length:", len(train_dataset)) | |
if args.distributed: | |
sampler_train = torch.utils.data.DistributedSampler( | |
train_dataset, num_replicas=num_tasks, rank=global_rank, shuffle=True | |
) | |
else: | |
sampler_train = torch.utils.data.RandomSampler(train_dataset) | |
data_loader_train = torch.utils.data.DataLoader( | |
train_dataset, | |
sampler=sampler_train, | |
batch_size=args.batch_size, | |
num_workers=args.num_workers, | |
pin_memory=True, | |
drop_last=True, | |
) | |
if args.val_dataset == "": | |
data_loaders_val = None | |
else: | |
print("Building Val Data loader for datasets: ", args.val_dataset) | |
val_datasets = ( | |
get_test_datasets_stereo | |
if args.task == "stereo" | |
else get_test_datasets_flow | |
)(args.val_dataset) | |
for val_dataset in val_datasets: | |
print(repr(val_dataset)) | |
data_loaders_val = [ | |
DataLoader( | |
val_dataset, | |
batch_size=1, | |
shuffle=False, | |
num_workers=args.num_workers, | |
pin_memory=True, | |
drop_last=False, | |
) | |
for val_dataset in val_datasets | |
] | |
bestmetric = ( | |
"AVG_" | |
if len(data_loaders_val) > 1 | |
else str(data_loaders_val[0].dataset) + "_" | |
) + args.bestmetric | |
print(f"Start training for {args.epochs} epochs") | |
start_time = time.time() | |
# Training Loop | |
for epoch in range(args.start_epoch, args.epochs): | |
if args.distributed: | |
data_loader_train.sampler.set_epoch(epoch) | |
# Train | |
epoch_start = time.time() | |
train_stats = train_one_epoch( | |
model, | |
criterion, | |
metrics, | |
data_loader_train, | |
optimizer, | |
device, | |
epoch, | |
loss_scaler, | |
log_writer=log_writer, | |
args=args, | |
) | |
epoch_time = time.time() - epoch_start | |
if args.distributed: | |
dist.barrier() | |
# Validation (current naive implementation runs the validation on every gpu ... not smart ...) | |
if ( | |
data_loaders_val is not None | |
and args.eval_every > 0 | |
and (epoch + 1) % args.eval_every == 0 | |
): | |
val_epoch_start = time.time() | |
val_stats = validate_one_epoch( | |
model, | |
criterion, | |
metrics, | |
data_loaders_val, | |
device, | |
epoch, | |
log_writer=log_writer, | |
args=args, | |
) | |
val_epoch_time = time.time() - val_epoch_start | |
val_best = val_stats[bestmetric] | |
# Save best of all | |
if val_best <= best_so_far: | |
best_so_far = val_best | |
misc.save_model( | |
args=args, | |
model_without_ddp=model_without_ddp, | |
optimizer=optimizer, | |
loss_scaler=loss_scaler, | |
epoch=epoch, | |
best_so_far=best_so_far, | |
fname="best", | |
) | |
log_stats = { | |
**{f"train_{k}": v for k, v in train_stats.items()}, | |
"epoch": epoch, | |
**{f"val_{k}": v for k, v in val_stats.items()}, | |
} | |
else: | |
log_stats = { | |
**{f"train_{k}": v for k, v in train_stats.items()}, | |
"epoch": epoch, | |
} | |
if args.distributed: | |
dist.barrier() | |
# Save stuff | |
if args.output_dir and ( | |
(epoch + 1) % args.save_every == 0 or epoch + 1 == args.epochs | |
): | |
misc.save_model( | |
args=args, | |
model_without_ddp=model_without_ddp, | |
optimizer=optimizer, | |
loss_scaler=loss_scaler, | |
epoch=epoch, | |
best_so_far=best_so_far, | |
fname="last", | |
) | |
if args.output_dir: | |
if log_writer is not None: | |
log_writer.flush() | |
with open( | |
os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8" | |
) as f: | |
f.write(json.dumps(log_stats) + "\n") | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
print("Training time {}".format(total_time_str)) | |
if __name__ == "__main__": | |
args = get_args_parser() | |
args = args.parse_args() | |
main(args) | |