File size: 13,903 Bytes
542285e
23097b5
e42b8e3
23097b5
e42b8e3
23097b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
480c4d5
26b6248
 
 
23097b5
480c4d5
68fe85e
 
 
 
 
 
d9762c0
 
 
d51b983
23097b5
480c4d5
 
 
 
 
 
 
430ab8a
23097b5
d51b983
480c4d5
 
426b117
480c4d5
 
 
 
 
23097b5
426b117
 
 
 
 
23097b5
426b117
23097b5
426b117
23097b5
 
 
 
 
 
426b117
23097b5
 
 
426b117
23097b5
426b117
23097b5
 
 
 
 
 
 
 
 
 
 
1d5f06c
426b117
 
 
 
23097b5
1d5f06c
f3141ca
20b319d
d589298
 
 
 
 
 
 
426b117
 
 
480c4d5
426b117
480c4d5
 
 
 
 
 
 
 
 
 
 
1d5f06c
d589298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426b117
d589298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b0824e
 
d589298
 
 
426b117
4e18fb4
26b6248
4e18fb4
 
 
 
 
 
 
 
 
 
 
 
 
23097b5
 
 
d26f33a
3eb8290
480c4d5
3eb8290
1162dad
23097b5
5b0824e
23097b5
 
 
7758b50
0d1d8fa
 
 
23097b5
 
 
dd1e68b
1a34b46
 
 
 
1d5f06c
1a34b46
 
 
 
 
1d5f06c
1a34b46
 
1d5f06c
1a34b46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d5f06c
1a34b46
 
 
 
 
 
6d0c5b3
1a34b46
d589298
6d0c5b3
d589298
 
 
1d5f06c
d589298
 
1a34b46
d589298
 
 
 
 
 
 
1a34b46
d589298
6d0c5b3
1a34b46
d589298
 
 
 
 
 
 
 
 
 
 
 
 
6d0c5b3
d589298
4e18fb4
 
 
 
 
 
 
 
 
 
 
d589298
4e18fb4
 
 
 
 
 
 
 
 
 
 
 
d589298
6d0c5b3
d589298
 
 
 
 
 
 
 
 
 
 
eca91f3
d589298
 
 
 
1162dad
 
 
 
 
 
 
6d0c5b3
 
 
d9428b7
dbb85c7
d9428b7
9a0b27c
23097b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162dad
 
 
 
 
 
 
 
 
 
 
d589298
23097b5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import dash
from dash import Dash, html, dcc, callback, Output, Input
from dash import dash_table
import plotly.express as px

from app import app
import pandas as pd

import datetime
import requests
from io import StringIO
from datetime import date

import dash_bootstrap_components as dbc
import plotly.express as px

server = app.server

url='https://drive.google.com/file/d/1NaXOYHQFF5UO5rQr4rn8Lr3bkYMSOq4_/view?usp=sharing'
url='https://drive.google.com/uc?id=' + url.split('/')[-2]

# reading of file
df = pd.read_csv(url)

# filtering the file for more than 4 tokens
df = df[df['Headline'].str.split().str.len().gt(4)]  

df['date'] = pd.to_datetime(df['date'])

unique_domains = df['domain_folder_name'].unique()
print(unique_domains)

unique_topics = df['Topic'].unique()
print(unique_topics)

#copying a column 
df["Veículos de notícias"] = df["domain_folder_name"]

# df = df.rename(columns={df.columns[4]: "Veículos de notícias"})

df['FinBERT_label'] = df['FinBERT_label'].astype(str)
df['FinBERT_label'].replace({
    '3.0': 'positive',
    '2.0': 'neutral',
    '1.0': 'negative'
}, inplace=True)



counts = df.groupby(['date', 'Topic', 'domain_folder_name', 'FinBERT_label']).size().reset_index(name='count')
counts['count'] = counts['count'].astype('float64')
counts['rolling_mean_counts'] = counts['count'].rolling(window=30, min_periods=2).mean()

df_pos = counts[[x in ['positive'] for x in counts.FinBERT_label]]
df_neu = counts[[x in ['neutral'] for x in counts.FinBERT_label]]
df_neg = counts[[x in ['negative'] for x in counts.FinBERT_label]]



app.layout = dbc.Container([   
    dbc.Row([ # row 1
        dbc.Col([html.H1('Evolução temporal de sentimento em títulos de notícias')],
        className="text-center mt-3 mb-1")]),
    
    dbc.Row([ # row 2
        dbc.Label("Selecione um período (mm/dd/aaaa):", className="fw-bold")]),

    dbc.Row([ # row 3
        dcc.DatePickerRange(
            id='date-range',
            min_date_allowed=df['date'].min().date(),
            max_date_allowed=df['date'].max().date(),
            initial_visible_month=df['date'].min().date(),
            start_date=df['date'].min().date(),
            end_date=df['date'].max().date())]),

    dbc.Row([ # row 4
        dbc.Label("Escolha um tópico:", className="fw-bold")
    ]),

    dbc.Row([ # row 5
        dbc.Col(
            dcc.Dropdown(
                id="topic-selector",
                options=[
                    {"label": topic, "value": topic} for topic in unique_topics
                ],
                value="Imigrantes",  # Set the initial value
                style={"width": "50%"})


        )
    ]),
    
    dbc.Row([ # row 6
            dbc.Col(dcc.Graph(id='line-graph-1'))
    ]),

    dbc.Row([ # row 7 but needs to be updated
        dbc.Col(dcc.Graph(id="bar-graph-1"))
    ]),
    
    # html.Div(id='pie-container-1'),
    dbc.Row([ # row 9
             dbc.Col(dcc.Graph(id='pie-graph-1'),
                )
    ]),
    
    dbc.Row([ # row 7
            dbc.Label("Escolha um site de notícias:", className="fw-bold")
    ]),

    dbc.Row([ # row 8
        dbc.Col(
            dcc.Dropdown(
                id="domain-selector",
                options=[
                    {"label": domain, "value": domain} for domain in unique_domains
                ],
                value="expresso-pt",  # Set the initial value
                style={"width": "50%"})


        )
    ]),
    
     dbc.Row([ # row 9
             dbc.Col(dcc.Graph(id='line-graph-2'),
                     )
     ]),
    
    # dbc.Row([ # row 9
    #         dbc.Col(dcc.Graph(id='line-graph-2'),
    #                 )
    # ]),

    # dbc.Row([ # row 10
    #         dbc.Col(dcc.Graph(id='line-graph-3'),
    #                 )
    # ]),
    
    # dbc.Row([ # row 11
    #         dbc.Col(dcc.Graph(id='line-graph-4'),
    #                 )
    # ]),

    # html.Div(id='pie-container-2'),
     dbc.Row([ # row 9
             dbc.Col(dcc.Graph(id='pie-graph-2'),
                )
     ]),
    
    dbc.Row([ # row 9
            dbc.Col(
                dash_table.DataTable(
                    id='headlines-table',
                    columns=[
                        {"name": "Headline", "id": "Headline"},
                        {"name": "URL", "id": "url"},
                        {"name": "Date", "id": "date"},
                        {"name": "Sentiment Label", "id": "FinBERT_label"}
                    ],
                    style_table={'overflowX': 'auto'},
                    style_cell={
                        'textAlign': 'left',
                        'whiteSpace': 'normal',
                        'height': 'auto',
                        'minWidth': '180px', 'width': '180px', 'maxWidth': '180px',
                    },
                    page_current= 0,
                    page_size= 10,
                )
            )
        ])
    
])

# # Create a function to generate pie charts
# def generate_pie_chart(category):
#     labels = data[category]['labels']
#     values = data[category]['values']
#     trace = go.Pie(labels=labels, values=values)
#     layout = go.Layout(title=f'Pie Chart - {category}')
#     return dcc.Graph(
#         figure={
#             'data': [trace],
#             'layout': layout
#         }
#     )
    
# callback decorator
@app.callback(
    Output('line-graph-1', 'figure'),
    Output('bar-graph-1','figure'),
    Output('pie-graph-1', 'figure'),
    Output('line-graph-2', 'figure'),
    Output('pie-graph-2', 'figure'),
    Output('headlines-table', 'data'),
    Input("topic-selector", "value"),
    Input("domain-selector", "value"),
    Input('date-range', 'start_date'),
    Input('date-range', 'end_date')
)
def update_output(selected_topic, selected_domain, start_date, end_date):
    #log
    print("topic",selected_topic,"domain",selected_domain,"start", start_date,"date", end_date)
    
    # filter dataframes based on updated data range
    mask_1 = ((df["Topic"] == selected_topic) & (df['date'] >= start_date) & (df['date'] <= end_date))
    df_filtered = df.loc[mask_1]
    print(df_filtered.shape)
    if len(df_filtered)>0:
        #create line graphs based on filtered dataframes
        line_fig_1 = px.line(df_filtered, x="date", y="normalised results",
                         color='Veículos de notícias', title="O gráfico mostra a evolução temporal de sentimento dos títulos de notícias. Numa escala de -1 (negativo) a 1 (positivo), sendo 0 (neutro).")
    
        # Veículos de notícias
        #set x-axis title and y-axis title in line graphs
        line_fig_1.update_layout(
                       xaxis_title='Data',
                       yaxis_title='Classificação de Sentimento')
    
        #set label format on y-axis in line graphs
        line_fig_1.update_xaxes(tickformat="%b %d<br>%Y")
    
        # Bar Graph start
        grouped_df = df_filtered.groupby(['date', 'Veículos de notícias']).size().reset_index(name='occurrences')
        
        # Sort DataFrame by 'period' column
        grouped_df = grouped_df.sort_values(by='date')
        
        # Create a list of all unique media
        all_media = df_filtered['domain_folder_name'].unique()
        
        # Create a date range from Jan/2000 to the last month in the dataset
        date_range = pd.date_range(start=df_filtered['date'].min().date(), end=df_filtered['date'].max().date(), freq='MS')
        
        # Create a MultiIndex with all combinations of date_range and all_media
        idx = pd.MultiIndex.from_product([date_range, all_media], names=['date', 'Veículos de notícias'])
        
        # Reindex the DataFrame to include all periods and media
        grouped_df = grouped_df.set_index(['date', 'Veículos de notícias']).reindex(idx, fill_value=0).reset_index()
    
        bar_fig_1 = px.bar(grouped_df, x='date', y='occurrences', color='Veículos de notícias',
                 labels={'date': 'Período', 'occurrences': 'Número de notícias', 'Veículos de notícias': 'Portal'},
                 title='Número de notícias por período de tempo')
        bar_fig_1.update_xaxes(tickformat="%b %d<br>%Y")
        # Bar Graph ends
                           
        # line-fig 2 starts
        # filter dataframes based on updated data range
        # Filtering data...
        df_filtered_2 = counts[(counts['Topic'] == selected_topic) &
                             (counts['domain_folder_name'] == selected_domain) &
                             (counts['date'] >= start_date) &
                             (counts['date'] <= end_date)]
    
        # Create a date range for the selected period
        date_range = pd.date_range(start=start_date, end=end_date)
    
        # Create a DataFrame with all possible combinations of classes, topics, and dates
        all_combinations = pd.MultiIndex.from_product([['positive', 'neutral', 'negative'],
                                                       [selected_topic],
                                                       [selected_domain],
                                                       date_range],
                                                      names=['FinBERT_label', 'Topic', 'domain_folder_name', 'date'])
        df_all_combinations = pd.DataFrame(index=all_combinations).reset_index()
    
        # Merge filtered DataFrame with DataFrame of all combinations
        merged_df = pd.merge(df_all_combinations, df_filtered_2, on=['FinBERT_label', 'Topic', 'domain_folder_name', 'date'], how='left')
    
        # Fill missing values with zeros
        merged_df['count'].fillna(0, inplace=True)
        merged_df['rolling_mean_counts'].fillna(0, inplace=True)
    
        # Create line graph...
        line_fig_2 = px.line(merged_df, x="date", y="count", color="FinBERT_label",
                       line_group="FinBERT_label", title="Sentiment Over Time",
                       labels={"count": "Number of News Articles", "date": "Date"})
    
    
        # Update layout...
        line_fig_2.update_layout(xaxis_title='Date', yaxis_title='Number of News Articles',
                               xaxis=dict(tickformat="%b %d<br>%Y"))
        # line-fig 2 ends
        
        # Map original labels to their translated versions
        label_translation = {'positive': 'positivo', 'neutral': 'neutro', 'negative': 'negativo'}
        df_filtered['FinBERT_label_transformed'] = df_filtered['FinBERT_label'].map(label_translation)
        
        # Group by FinBERT_label and count occurrences
        label_counts_all = df_filtered['FinBERT_label_transformed'].value_counts()
        
        # Calculate percentage of each label
        label_percentages_all = (label_counts_all / label_counts_all.sum()) * 100
        
        # Plot general pie chart
        pie_chart_1 = px.pie(
            values=label_percentages_all,
            names=label_percentages_all.index,
            title='Distribuição Geral',
            color_discrete_sequence=['#039a4d', '#3c03f4', '#ca3919']
        )
        
        # Get unique media categories
        media_categories = df_filtered['Veículos de notícias'].unique()
        
        # Define colors for each label
        label_colors = {'positivo': '#039a4d', 'neutro': '#3c03f4', 'negativo': '#ca3919'}
                         
        # Filter DataFrame for current media category
        media_df = df_filtered[df_filtered['Veículos de notícias'] == selected_domain]
    
        # Group by FinBERT_label and count occurrences
        label_counts = media_df['FinBERT_label_transformed'].value_counts()
    
        # Calculate percentage of each label
        label_percentages = (label_counts / label_counts.sum()) * 100
    
        # Plot pie chart
        pie_chart_2 = px.pie(
            values=label_percentages,
            names=label_percentages.index,
            title=f'Distribuição para {selected_domain}',
            color_discrete_sequence=[label_colors[label] for label in label_percentages.index]
        )
        # pie_chart_2 = dcc.Graph(figure=fig)
        # pie_chart_2 = html.Div(fig,className='four columns')
       
        # Convert FinBERT_label to categorical for better sorting
        df_filtered['FinBERT_label'] = pd.Categorical(df_filtered['FinBERT_label'],
                                                      categories=['positive', 'neutral', 'negative'],
                                                      ordered=True)

        # Sort DataFrame by sentiment label and date
        # df_filtered = df_filtered.sort_values(by=['FinBERT_label', 'date'])
        # df_filtered.to_dict('records')
        return line_fig_1, bar_fig_1, pie_chart_1, line_fig_2, pie_chart_2, {'data': []}
    else:
        return {'data': []},{'data': []} ,{'data': []} ,{'data': []} , {'data': []}, {'data': []}
    
    # return line_fig_1
    


# df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder_unfiltered.csv')



# app.layout = html.Div([
#     html.H1(children='Title of Dash App', style={'textAlign':'center'}),
#     dcc.Dropdown(df.country.unique(), 'Canada', id='dropdown-selection'),
#     dcc.Graph(id='graph-content')
# ])

# @callback(
#     Output('graph-content', 'figure'),
#     Input('dropdown-selection', 'value')
# )
# def update_graph(value):
#     dff = df[df.country==value]
#     return px.line(dff, x='year', y='pop')

# # Define callback function for updating the headlines table
# @app.callback(
#     Output('headlines-table', 'data'),
#     Input("topic-selector", "value"),
#     Input("domain-selector", "value"),
#     Input('date-range', 'start_date'),
#     Input('date-range', 'end_date')
# )
# def update_headlines_table(selected_topic, selected_domain, start_date, end_date):
#     # Filtering data...
    
    
if __name__ == '__main__':
    app.run_server(debug=True)