thak123 commited on
Commit
05a3992
·
verified ·
1 Parent(s): a8ba682

Update index.py

Browse files
Files changed (1) hide show
  1. index.py +11 -3
index.py CHANGED
@@ -14,6 +14,12 @@ from datetime import date
14
  import dash_bootstrap_components as dbc
15
  import plotly.express as px
16
 
 
 
 
 
 
 
17
  server = app.server
18
 
19
  url='https://drive.google.com/file/d/1NaXOYHQFF5UO5rQr4rn8Lr3bkYMSOq4_/view?usp=sharing'
@@ -212,15 +218,17 @@ app.layout = dbc.Container([
212
  )
213
  def update_output(selected_topic, selected_domain, start_date, end_date):
214
  #log
215
- print("topic:",selected_topic,"domain:",selected_domain,"start:", start_date,"end:", end_date)
216
 
217
  # This is a hack to filter dates to confine to respective topic boundaries
218
  min_topic_date = df[df["Topic"] == selected_topic]["date"].min()
219
  max_topic_date = df[df["Topic"] == selected_topic]["date"].max()
220
 
221
  #if start visualisation from where the topic starts
222
- start_date = min_topic_date if (min_topic_date > start_date) else start_date
223
- end_date = max_topic_date if (max_topic_date < end_date ) else end_date
 
 
224
 
225
  # filter dataframes based on updated data range
226
  mask_1 = ((df["Topic"] == selected_topic) & (df['date'] >= start_date) & (df['date'] <= end_date))
 
14
  import dash_bootstrap_components as dbc
15
  import plotly.express as px
16
 
17
+
18
+ from dateutil.parser import parse
19
+
20
+ def convert_to_datetime(input_str, parserinfo=None):
21
+ return parse(input_str, parserinfo=parserinfo)
22
+
23
  server = app.server
24
 
25
  url='https://drive.google.com/file/d/1NaXOYHQFF5UO5rQr4rn8Lr3bkYMSOq4_/view?usp=sharing'
 
218
  )
219
  def update_output(selected_topic, selected_domain, start_date, end_date):
220
  #log
221
+ print("topic:",selected_topic,"domain:",selected_domain,"start:", start_date,"end:", end_date,"\n\n")
222
 
223
  # This is a hack to filter dates to confine to respective topic boundaries
224
  min_topic_date = df[df["Topic"] == selected_topic]["date"].min()
225
  max_topic_date = df[df["Topic"] == selected_topic]["date"].max()
226
 
227
  #if start visualisation from where the topic starts
228
+ start_date = min_topic_date.dt.date if (min_topic_date > convert_to_datetime(start_date)) else start_date
229
+ end_date = max_topic_date.dt.date if (max_topic_date < convert_to_datetime(end_date)) else end_date
230
+
231
+ print("After: Sd",start_date,"Ed",end_date)
232
 
233
  # filter dataframes based on updated data range
234
  mask_1 = ((df["Topic"] == selected_topic) & (df['date'] >= start_date) & (df['date'] <= end_date))