Spaces:
Running
on
T4
Running
on
T4
Tom Aarsen
commited on
Commit
·
3921dd6
1
Parent(s):
eded98b
Add SparseEncoder & CrossEncoder support to backend-export
Browse files- README.md +1 -1
- app.py +490 -112
- images/backends_benchmark_cpu.png +0 -0
- images/backends_benchmark_gpu.png +0 -0
- requirements.txt +3 -3
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: ⚙️
|
|
4 |
colorFrom: indigo
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
4 |
colorFrom: indigo
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.42.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
app.py
CHANGED
@@ -1,18 +1,30 @@
|
|
1 |
from enum import Enum
|
2 |
-
from functools import partial
|
|
|
3 |
from pathlib import Path
|
4 |
from typing import Optional, Tuple
|
5 |
import gradio as gr
|
6 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
7 |
import huggingface_hub
|
8 |
-
from sentence_transformers import SentenceTransformer
|
9 |
from sentence_transformers import (
|
10 |
export_dynamic_quantized_onnx_model as st_export_dynamic_quantized_onnx_model,
|
11 |
export_optimized_onnx_model as st_export_optimized_onnx_model,
|
12 |
export_static_quantized_openvino_model as st_export_static_quantized_openvino_model,
|
13 |
)
|
14 |
-
from huggingface_hub import
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
from optimum.intel import OVQuantizationConfig
|
17 |
from tempfile import TemporaryDirectory
|
18 |
|
@@ -29,9 +41,20 @@ class Backend(Enum):
|
|
29 |
return self.value
|
30 |
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
backends = [str(backend) for backend in Backend]
|
33 |
FILE_SYSTEM = HfFileSystem()
|
34 |
|
|
|
35 |
def is_new_model(model_id: str) -> bool:
|
36 |
"""
|
37 |
Check if the model ID exists on the Hugging Face Hub. If we get a request error, then we
|
@@ -50,12 +73,59 @@ def is_sentence_transformer_model(model_id: str) -> bool:
|
|
50 |
return "sentence-transformers" in model_info(model_id).tags
|
51 |
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
def get_last_commit(model_id: str) -> str:
|
54 |
"""
|
55 |
Get the last commit hash of the model ID.
|
56 |
"""
|
57 |
return f"https://huggingface.co/{model_id}/commit/{list_repo_commits(model_id)[0].commit_id}"
|
58 |
|
|
|
59 |
def get_last_pr(model_id: str) -> Tuple[str, int]:
|
60 |
last_pr = next(get_repo_discussions(model_id))
|
61 |
return last_pr.url, last_pr.num
|
@@ -80,12 +150,25 @@ def export_to_torch(model_id, create_pr, output_model_id):
|
|
80 |
)
|
81 |
|
82 |
|
83 |
-
def export_to_onnx(
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
if does_file_glob_exist(output_model_id, "**/model.onnx"):
|
85 |
raise FileExistsError("An ONNX model already exists in the repository")
|
86 |
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
commit_message = "Add exported onnx model 'model.onnx'"
|
90 |
|
91 |
if is_new_model(output_model_id):
|
@@ -110,22 +193,27 @@ Hello!
|
|
110 |
## Tip:
|
111 |
Consider testing this pull request before merging by loading the model from this PR with the `revision` argument:
|
112 |
```python
|
113 |
-
from sentence_transformers import
|
114 |
|
115 |
# TODO: Fill in the PR number
|
116 |
pr_number = 2
|
117 |
-
model =
|
118 |
"{output_model_id}",
|
119 |
revision=f"refs/pr/{{pr_number}}",
|
120 |
backend="onnx",
|
121 |
)
|
122 |
|
123 |
# Verify that everything works as expected
|
124 |
-
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
125 |
print(embeddings.shape)
|
126 |
|
127 |
similarities = model.similarity(embeddings, embeddings)
|
128 |
-
print(similarities)
|
|
|
|
|
|
|
|
|
|
|
129 |
```
|
130 |
"""
|
131 |
|
@@ -139,16 +227,24 @@ print(similarities)
|
|
139 |
token=token,
|
140 |
)
|
141 |
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
pip install sentence_transformers[onnx-gpu]
|
145 |
# or
|
146 |
pip install sentence_transformers[onnx]
|
147 |
-
""",
|
148 |
-
|
|
|
149 |
|
150 |
# 1. Load the model to be exported with the ONNX backend
|
151 |
-
model =
|
152 |
"{model_id}",
|
153 |
backend="onnx",
|
154 |
)
|
@@ -160,31 +256,60 @@ model = SentenceTransformer(
|
|
160 |
"{output_model_id}",
|
161 |
create_pr=True,
|
162 |
)'''}
|
163 |
-
""",
|
164 |
-
|
|
|
165 |
|
166 |
# 1. Load the model from the Hugging Face Hub
|
167 |
# (until merged) Use the `revision` argument to load the model from the PR
|
168 |
pr_number = 2
|
169 |
-
model =
|
170 |
"{output_model_id}",
|
171 |
revision=f"refs/pr/{{pr_number}}",
|
172 |
backend="onnx",
|
173 |
)
|
174 |
-
|
|
|
|
|
175 |
# 2. Inference works as normal
|
176 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
177 |
similarities = model.similarity(embeddings, embeddings)
|
178 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
|
181 |
def export_to_onnx_dynamic_quantization(
|
182 |
-
model_id: str,
|
|
|
|
|
|
|
|
|
|
|
183 |
) -> None:
|
184 |
-
if does_file_glob_exist(
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
if not create_pr and is_new_model(output_model_id):
|
190 |
model.push_to_hub(repo_id=output_model_id, token=token)
|
@@ -202,7 +327,20 @@ def export_to_onnx_dynamic_quantization(
|
|
202 |
)
|
203 |
except ValueError:
|
204 |
# Currently, quantization with optimum has some issues if there's already an ONNX model in a subfolder
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
st_export_dynamic_quantized_onnx_model(
|
207 |
model,
|
208 |
quantization_config=onnx_quantization_config,
|
@@ -213,21 +351,31 @@ def export_to_onnx_dynamic_quantization(
|
|
213 |
finally:
|
214 |
huggingface_hub.upload_folder = original_upload_folder
|
215 |
|
|
|
216 |
def export_to_onnx_dynamic_quantization_snippet(
|
217 |
-
model_id: str,
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
pip install sentence_transformers[onnx-gpu]
|
221 |
# or
|
222 |
pip install sentence_transformers[onnx]
|
223 |
-
""",
|
|
|
224 |
from sentence_transformers import (
|
225 |
-
|
226 |
export_dynamic_quantized_onnx_model,
|
227 |
)
|
228 |
|
229 |
-
# 1. Load the model to be
|
230 |
-
model =
|
231 |
"{model_id}",
|
232 |
backend="onnx",
|
233 |
)
|
@@ -240,29 +388,61 @@ export_dynamic_quantized_onnx_model(
|
|
240 |
push_to_hub=True,
|
241 |
{''' create_pr=True,
|
242 |
''' if create_pr else ''})
|
243 |
-
""",
|
244 |
-
|
|
|
245 |
|
246 |
# 1. Load the model from the Hugging Face Hub
|
247 |
# (until merged) Use the `revision` argument to load the model from the PR
|
248 |
pr_number = 2
|
249 |
-
model =
|
250 |
"{output_model_id}",
|
251 |
revision=f"refs/pr/{{pr_number}}",
|
252 |
backend="onnx",
|
253 |
model_kwargs={{"file_name": "model_qint8_{onnx_quantization_config}.onnx"}},
|
254 |
)
|
255 |
-
|
|
|
|
|
256 |
# 2. Inference works as normal
|
257 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
258 |
similarities = model.similarity(embeddings, embeddings)
|
259 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
-
def export_to_onnx_optimization(model_id: str, create_pr: bool, output_model_id: str, onnx_optimization_config: str, token: Optional[str] = None) -> None:
|
262 |
-
if does_file_glob_exist(output_model_id, f"onnx/model_{onnx_optimization_config}.onnx"):
|
263 |
-
raise FileExistsError("The optimized ONNX model already exists in the repository")
|
264 |
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
if not create_pr and is_new_model(output_model_id):
|
268 |
model.push_to_hub(repo_id=output_model_id, token=token)
|
@@ -281,19 +461,31 @@ def export_to_onnx_optimization(model_id: str, create_pr: bool, output_model_id:
|
|
281 |
finally:
|
282 |
huggingface_hub.upload_folder = original_upload_folder
|
283 |
|
284 |
-
|
285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
pip install sentence_transformers[onnx-gpu]
|
287 |
# or
|
288 |
pip install sentence_transformers[onnx]
|
289 |
-
""",
|
|
|
290 |
from sentence_transformers import (
|
291 |
-
|
292 |
export_optimized_onnx_model,
|
293 |
)
|
294 |
|
295 |
# 1. Load the model to be optimized with the ONNX backend
|
296 |
-
model =
|
297 |
"{model_id}",
|
298 |
backend="onnx",
|
299 |
)
|
@@ -306,30 +498,56 @@ export_optimized_onnx_model(
|
|
306 |
push_to_hub=True,
|
307 |
{''' create_pr=True,
|
308 |
''' if create_pr else ''})
|
309 |
-
""",
|
310 |
-
|
|
|
311 |
|
312 |
# 1. Load the model from the Hugging Face Hub
|
313 |
# (until merged) Use the `revision` argument to load the model from the PR
|
314 |
pr_number = 2
|
315 |
-
model =
|
316 |
"{output_model_id}",
|
317 |
revision=f"refs/pr/{{pr_number}}",
|
318 |
backend="onnx",
|
319 |
model_kwargs={{"file_name": "model_{onnx_optimization_config}.onnx"}},
|
320 |
)
|
321 |
-
|
|
|
|
|
322 |
# 2. Inference works as normal
|
323 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
324 |
similarities = model.similarity(embeddings, embeddings)
|
325 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
|
327 |
|
328 |
-
def export_to_openvino(
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
if does_file_glob_exist(output_model_id, "**/openvino_model.xml"):
|
330 |
raise FileExistsError("The OpenVINO model already exists in the repository")
|
331 |
|
332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
commit_message = "Add exported openvino model 'openvino_model.xml'"
|
335 |
|
@@ -355,22 +573,27 @@ Hello!
|
|
355 |
## Tip:
|
356 |
Consider testing this pull request before merging by loading the model from this PR with the `revision` argument:
|
357 |
```python
|
358 |
-
from sentence_transformers import
|
359 |
|
360 |
# TODO: Fill in the PR number
|
361 |
pr_number = 2
|
362 |
-
model =
|
363 |
"{output_model_id}",
|
364 |
revision=f"refs/pr/{{pr_number}}",
|
365 |
backend="openvino",
|
366 |
)
|
367 |
|
368 |
# Verify that everything works as expected
|
369 |
-
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
370 |
print(embeddings.shape)
|
371 |
|
372 |
similarities = model.similarity(embeddings, embeddings)
|
373 |
-
print(similarities)
|
|
|
|
|
|
|
|
|
|
|
374 |
```
|
375 |
"""
|
376 |
|
@@ -384,14 +607,22 @@ print(similarities)
|
|
384 |
token=token,
|
385 |
)
|
386 |
|
387 |
-
|
388 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
pip install sentence_transformers[openvino]
|
390 |
-
""",
|
391 |
-
|
|
|
392 |
|
393 |
# 1. Load the model to be exported with the OpenVINO backend
|
394 |
-
model =
|
395 |
"{model_id}",
|
396 |
backend="openvino",
|
397 |
)
|
@@ -403,25 +634,40 @@ model = SentenceTransformer(
|
|
403 |
"{output_model_id}",
|
404 |
create_pr=True,
|
405 |
)'''}
|
406 |
-
""",
|
407 |
-
|
|
|
408 |
|
409 |
# 1. Load the model from the Hugging Face Hub
|
410 |
# (until merged) Use the `revision` argument to load the model from the PR
|
411 |
pr_number = 2
|
412 |
-
model =
|
413 |
"{output_model_id}",
|
414 |
revision=f"refs/pr/{{pr_number}}",
|
415 |
backend="openvino",
|
416 |
)
|
417 |
-
|
|
|
|
|
418 |
# 2. Inference works as normal
|
419 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
420 |
similarities = model.similarity(embeddings, embeddings)
|
421 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
422 |
|
423 |
def export_to_openvino_static_quantization(
|
424 |
model_id: str,
|
|
|
425 |
create_pr: bool,
|
426 |
output_model_id: str,
|
427 |
ov_quant_dataset_name: str,
|
@@ -431,10 +677,21 @@ def export_to_openvino_static_quantization(
|
|
431 |
ov_quant_dataset_num_samples: int,
|
432 |
token: Optional[str] = None,
|
433 |
) -> None:
|
434 |
-
if does_file_glob_exist(
|
435 |
-
|
|
|
|
|
|
|
|
|
436 |
|
437 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
|
439 |
if not create_pr and is_new_model(output_model_id):
|
440 |
model.push_to_hub(repo_id=output_model_id, token=token)
|
@@ -459,8 +716,10 @@ def export_to_openvino_static_quantization(
|
|
459 |
finally:
|
460 |
huggingface_hub.upload_folder = original_upload_folder
|
461 |
|
|
|
462 |
def export_to_openvino_static_quantization_snippet(
|
463 |
model_id: str,
|
|
|
464 |
create_pr: bool,
|
465 |
output_model_id: str,
|
466 |
ov_quant_dataset_name: str,
|
@@ -468,18 +727,23 @@ def export_to_openvino_static_quantization_snippet(
|
|
468 |
ov_quant_dataset_split: str,
|
469 |
ov_quant_dataset_column_name: str,
|
470 |
ov_quant_dataset_num_samples: int,
|
471 |
-
) -> str:
|
472 |
-
|
|
|
|
|
|
|
|
|
473 |
pip install sentence_transformers[openvino]
|
474 |
-
""",
|
|
|
475 |
from sentence_transformers import (
|
476 |
-
|
477 |
export_static_quantized_openvino_model,
|
478 |
)
|
479 |
from optimum.intel import OVQuantizationConfig
|
480 |
|
481 |
# 1. Load the model to be quantized with the OpenVINO backend
|
482 |
-
model =
|
483 |
"{model_id}",
|
484 |
backend="openvino",
|
485 |
)
|
@@ -498,23 +762,37 @@ export_static_quantized_openvino_model(
|
|
498 |
push_to_hub=True,
|
499 |
{''' create_pr=True,
|
500 |
''' if create_pr else ''})
|
501 |
-
""",
|
502 |
-
|
|
|
503 |
|
504 |
# 1. Load the model from the Hugging Face Hub
|
505 |
# (until merged) Use the `revision` argument to load the model from the PR
|
506 |
pr_number = 2
|
507 |
-
model =
|
508 |
"{output_model_id}",
|
509 |
revision=f"refs/pr/{{pr_number}}",
|
510 |
backend="openvino",
|
511 |
model_kwargs={{"file_name": "openvino_model_qint8_quantized.xml"}},
|
512 |
)
|
513 |
-
|
|
|
|
|
514 |
# 2. Inference works as normal
|
515 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
516 |
similarities = model.similarity(embeddings, embeddings)
|
517 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
|
519 |
def on_submit(
|
520 |
model_id,
|
@@ -533,35 +811,67 @@ def on_submit(
|
|
533 |
profile: Optional[gr.OAuthProfile] = None,
|
534 |
):
|
535 |
if oauth_token is None or profile is None:
|
536 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
537 |
|
538 |
if not model_id:
|
539 |
-
return
|
|
|
|
|
|
|
|
|
540 |
|
541 |
if not is_sentence_transformer_model(model_id):
|
542 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
543 |
|
544 |
if output_model_id and "/" not in output_model_id:
|
545 |
output_model_id = f"{profile.name}/{output_model_id}"
|
546 |
|
547 |
output_model_id = output_model_id if not create_pr else model_id
|
|
|
548 |
|
549 |
try:
|
550 |
if backend == Backend.ONNX.value:
|
551 |
-
export_to_onnx(
|
|
|
|
|
552 |
elif backend == Backend.ONNX_DYNAMIC_QUANTIZATION.value:
|
553 |
export_to_onnx_dynamic_quantization(
|
554 |
-
model_id,
|
|
|
|
|
|
|
|
|
|
|
555 |
)
|
556 |
elif backend == Backend.ONNX_OPTIMIZATION.value:
|
557 |
export_to_onnx_optimization(
|
558 |
-
model_id,
|
|
|
|
|
|
|
|
|
|
|
559 |
)
|
560 |
elif backend == Backend.OPENVINO.value:
|
561 |
-
export_to_openvino(
|
|
|
|
|
562 |
elif backend == Backend.OPENVINO_STATIC_QUANTIZATION.value:
|
563 |
export_to_openvino_static_quantization(
|
564 |
model_id,
|
|
|
565 |
create_pr,
|
566 |
output_model_id,
|
567 |
ov_quant_dataset_name,
|
@@ -572,19 +882,32 @@ def on_submit(
|
|
572 |
token=oauth_token.token,
|
573 |
)
|
574 |
except FileExistsError as exc:
|
575 |
-
return
|
|
|
|
|
|
|
|
|
576 |
|
577 |
if create_pr:
|
578 |
url, num = get_last_pr(output_model_id)
|
579 |
-
return
|
580 |
-
|
|
|
|
|
|
|
|
|
581 |
# Remove the lines that refer to the revision argument
|
582 |
lines = inference_snippet.splitlines()
|
583 |
del lines[7]
|
584 |
del lines[4]
|
585 |
del lines[3]
|
586 |
inference_snippet = "\n".join(lines)
|
587 |
-
return
|
|
|
|
|
|
|
|
|
|
|
588 |
|
589 |
def on_change(
|
590 |
model_id,
|
@@ -602,31 +925,44 @@ def on_change(
|
|
602 |
profile: Optional[gr.OAuthProfile] = None,
|
603 |
) -> str:
|
604 |
if oauth_token is None or profile is None:
|
605 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
606 |
|
607 |
if not model_id:
|
608 |
return "", "", "", gr.Textbox("Please enter a model ID", visible=True)
|
609 |
-
|
610 |
if output_model_id and "/" not in output_model_id:
|
611 |
output_model_id = f"{profile.username}/{output_model_id}"
|
612 |
|
613 |
output_model_id = output_model_id if not create_pr else model_id
|
|
|
614 |
|
615 |
if backend == Backend.ONNX.value:
|
616 |
-
snippets = export_to_onnx_snippet(
|
|
|
|
|
617 |
elif backend == Backend.ONNX_DYNAMIC_QUANTIZATION.value:
|
618 |
snippets = export_to_onnx_dynamic_quantization_snippet(
|
619 |
-
model_id, create_pr, output_model_id, onnx_quantization_config
|
620 |
)
|
621 |
elif backend == Backend.ONNX_OPTIMIZATION.value:
|
622 |
snippets = export_to_onnx_optimization_snippet(
|
623 |
-
model_id, create_pr, output_model_id, onnx_optimization_config
|
624 |
)
|
625 |
elif backend == Backend.OPENVINO.value:
|
626 |
-
snippets = export_to_openvino_snippet(
|
|
|
|
|
627 |
elif backend == Backend.OPENVINO_STATIC_QUANTIZATION.value:
|
628 |
snippets = export_to_openvino_static_quantization_snippet(
|
629 |
model_id,
|
|
|
630 |
create_pr,
|
631 |
output_model_id,
|
632 |
ov_quant_dataset_name,
|
@@ -637,7 +973,7 @@ def on_change(
|
|
637 |
)
|
638 |
else:
|
639 |
return "", "", "", gr.Textbox("Unexpected backend!", visible=True)
|
640 |
-
|
641 |
return *snippets, gr.Textbox(visible=False)
|
642 |
|
643 |
|
@@ -664,34 +1000,75 @@ with gr.Blocks(
|
|
664 |
with gr.Row():
|
665 |
# Left Input Column
|
666 |
with gr.Column(scale=2):
|
667 |
-
|
668 |
gr.Markdown(
|
669 |
value="""\
|
670 |
-
### Export a
|
671 |
|
672 |
-
Sentence Transformers
|
673 |
-
Observe the
|
|
|
|
|
|
|
674 |
""",
|
675 |
label="",
|
676 |
container=True,
|
677 |
)
|
678 |
-
gr.HTML(
|
|
|
679 |
<details><summary>Click to see performance benchmarks</summary>
|
680 |
|
681 |
<table>
|
682 |
<thead>
|
683 |
<tr>
|
684 |
-
<th>GPU</th>
|
685 |
-
<th>CPU</th>
|
686 |
</tr>
|
687 |
</thead>
|
688 |
<tbody>
|
689 |
<tr>
|
690 |
<td>
|
691 |
-
<img src="https://
|
692 |
</td>
|
693 |
<td>
|
694 |
-
<img src="https://
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
695 |
</td>
|
696 |
</tr>
|
697 |
</tbody>
|
@@ -706,11 +1083,12 @@ Observe the [Speeding up Inference](https://sbert.net/docs/sentence_transformer/
|
|
706 |
</ul>
|
707 |
|
708 |
</details>
|
709 |
-
"""
|
|
|
710 |
|
711 |
model_id = HuggingfaceHubSearch(
|
712 |
-
label="
|
713 |
-
placeholder="Search for
|
714 |
search_type="model",
|
715 |
)
|
716 |
create_pr = gr.Checkbox(
|
@@ -741,33 +1119,33 @@ Observe the [Speeding up Inference](https://sbert.net/docs/sentence_transformer/
|
|
741 |
gr.Markdown(
|
742 |
value="[ONNX Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#onnx)",
|
743 |
container=True,
|
744 |
-
elem_classes=["small-text"]
|
745 |
)
|
746 |
with gr.Group(visible=False) as onnx_dynamic_quantization_group:
|
747 |
onnx_quantization_config = gr.Radio(
|
748 |
choices=["arm64", "avx2", "avx512", "avx512_vnni"],
|
749 |
value="avx512_vnni",
|
750 |
label="Quantization config",
|
751 |
-
info="[ONNX Quantization Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#quantizing-onnx-models)"
|
752 |
)
|
753 |
with gr.Group(visible=False) as onnx_optimization_group:
|
754 |
onnx_optimization_config = gr.Radio(
|
755 |
choices=["O1", "O2", "O3", "O4"],
|
756 |
value="O4",
|
757 |
label="Optimization config",
|
758 |
-
info="[ONNX Optimization Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#optimizing-onnx-models)"
|
759 |
)
|
760 |
with gr.Group(visible=False) as openvino_group:
|
761 |
gr.Markdown(
|
762 |
value="[OpenVINO Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#openvino)",
|
763 |
container=True,
|
764 |
-
elem_classes=["small-text"]
|
765 |
)
|
766 |
with gr.Group(visible=False) as openvino_static_quantization_group:
|
767 |
gr.Markdown(
|
768 |
value="[OpenVINO Quantization Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#quantizing-openvino-models)",
|
769 |
container=True,
|
770 |
-
elem_classes=["small-text"]
|
771 |
)
|
772 |
ov_quant_dataset_name = HuggingfaceHubSearch(
|
773 |
value="nyu-mll/glue",
|
|
|
1 |
from enum import Enum
|
2 |
+
from functools import lru_cache, partial
|
3 |
+
import json
|
4 |
from pathlib import Path
|
5 |
from typing import Optional, Tuple
|
6 |
import gradio as gr
|
7 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
8 |
import huggingface_hub
|
9 |
+
from sentence_transformers import CrossEncoder, SentenceTransformer, SparseEncoder
|
10 |
from sentence_transformers import (
|
11 |
export_dynamic_quantized_onnx_model as st_export_dynamic_quantized_onnx_model,
|
12 |
export_optimized_onnx_model as st_export_optimized_onnx_model,
|
13 |
export_static_quantized_openvino_model as st_export_static_quantized_openvino_model,
|
14 |
)
|
15 |
+
from huggingface_hub import (
|
16 |
+
model_info,
|
17 |
+
upload_folder,
|
18 |
+
get_repo_discussions,
|
19 |
+
list_repo_commits,
|
20 |
+
HfFileSystem,
|
21 |
+
hf_hub_download,
|
22 |
+
)
|
23 |
+
from huggingface_hub.errors import (
|
24 |
+
RepositoryNotFoundError,
|
25 |
+
HFValidationError,
|
26 |
+
EntryNotFoundError,
|
27 |
+
)
|
28 |
from optimum.intel import OVQuantizationConfig
|
29 |
from tempfile import TemporaryDirectory
|
30 |
|
|
|
41 |
return self.value
|
42 |
|
43 |
|
44 |
+
class Archetype(Enum):
|
45 |
+
SENTENCE_TRANSFORMER = "SentenceTransformer"
|
46 |
+
SPARSE_ENCODER = "SparseEncoder"
|
47 |
+
CROSS_ENCODER = "CrossEncoder"
|
48 |
+
OTHER = "Other"
|
49 |
+
|
50 |
+
def __str__(self):
|
51 |
+
return self.value
|
52 |
+
|
53 |
+
|
54 |
backends = [str(backend) for backend in Backend]
|
55 |
FILE_SYSTEM = HfFileSystem()
|
56 |
|
57 |
+
|
58 |
def is_new_model(model_id: str) -> bool:
|
59 |
"""
|
60 |
Check if the model ID exists on the Hugging Face Hub. If we get a request error, then we
|
|
|
73 |
return "sentence-transformers" in model_info(model_id).tags
|
74 |
|
75 |
|
76 |
+
@lru_cache()
|
77 |
+
def get_archetype(model_id: str) -> Archetype:
|
78 |
+
if "/" not in model_id:
|
79 |
+
return Archetype.OTHER
|
80 |
+
|
81 |
+
try:
|
82 |
+
config_sentence_transformers_path = hf_hub_download(
|
83 |
+
model_id, filename="config_sentence_transformers.json"
|
84 |
+
)
|
85 |
+
except (RepositoryNotFoundError, HFValidationError):
|
86 |
+
return Archetype.OTHER
|
87 |
+
except EntryNotFoundError:
|
88 |
+
config_sentence_transformers_path = None
|
89 |
+
|
90 |
+
try:
|
91 |
+
config_path = hf_hub_download(model_id, filename="config.json")
|
92 |
+
except (RepositoryNotFoundError, HFValidationError):
|
93 |
+
return Archetype.OTHER
|
94 |
+
except EntryNotFoundError:
|
95 |
+
config_path = None
|
96 |
+
|
97 |
+
if config_sentence_transformers_path is None and config_path is None:
|
98 |
+
return Archetype.OTHER
|
99 |
+
|
100 |
+
if config_sentence_transformers_path is not None:
|
101 |
+
with open(config_sentence_transformers_path, "r", encoding="utf8") as f:
|
102 |
+
st_config = json.load(f)
|
103 |
+
model_type = st_config.get("model_type", "SentenceTransformer")
|
104 |
+
if model_type == "SentenceTransformer":
|
105 |
+
return Archetype.SENTENCE_TRANSFORMER
|
106 |
+
elif model_type == "SparseEncoder":
|
107 |
+
return Archetype.SPARSE_ENCODER
|
108 |
+
else:
|
109 |
+
return Archetype.OTHER
|
110 |
+
|
111 |
+
if config_path is not None:
|
112 |
+
with open(config_path, "r", encoding="utf8") as f:
|
113 |
+
config = json.load(f)
|
114 |
+
if "sentence_transformers" in config or config["architectures"][0].endswith(
|
115 |
+
"ForSequenceClassification"
|
116 |
+
):
|
117 |
+
return Archetype.CROSS_ENCODER
|
118 |
+
|
119 |
+
return Archetype.OTHER
|
120 |
+
|
121 |
+
|
122 |
def get_last_commit(model_id: str) -> str:
|
123 |
"""
|
124 |
Get the last commit hash of the model ID.
|
125 |
"""
|
126 |
return f"https://huggingface.co/{model_id}/commit/{list_repo_commits(model_id)[0].commit_id}"
|
127 |
|
128 |
+
|
129 |
def get_last_pr(model_id: str) -> Tuple[str, int]:
|
130 |
last_pr = next(get_repo_discussions(model_id))
|
131 |
return last_pr.url, last_pr.num
|
|
|
150 |
)
|
151 |
|
152 |
|
153 |
+
def export_to_onnx(
|
154 |
+
model_id: str,
|
155 |
+
archetype: Archetype,
|
156 |
+
create_pr: bool,
|
157 |
+
output_model_id: str,
|
158 |
+
token: Optional[str] = None,
|
159 |
+
) -> None:
|
160 |
if does_file_glob_exist(output_model_id, "**/model.onnx"):
|
161 |
raise FileExistsError("An ONNX model already exists in the repository")
|
162 |
|
163 |
+
if archetype == Archetype.SENTENCE_TRANSFORMER:
|
164 |
+
model = SentenceTransformer(model_id, backend="onnx")
|
165 |
+
elif archetype == Archetype.SPARSE_ENCODER:
|
166 |
+
model = SparseEncoder(model_id, backend="onnx")
|
167 |
+
elif archetype == Archetype.CROSS_ENCODER:
|
168 |
+
model = CrossEncoder(model_id, backend="onnx")
|
169 |
+
else:
|
170 |
+
return
|
171 |
+
|
172 |
commit_message = "Add exported onnx model 'model.onnx'"
|
173 |
|
174 |
if is_new_model(output_model_id):
|
|
|
193 |
## Tip:
|
194 |
Consider testing this pull request before merging by loading the model from this PR with the `revision` argument:
|
195 |
```python
|
196 |
+
from sentence_transformers import {archetype}
|
197 |
|
198 |
# TODO: Fill in the PR number
|
199 |
pr_number = 2
|
200 |
+
model = {archetype}(
|
201 |
"{output_model_id}",
|
202 |
revision=f"refs/pr/{{pr_number}}",
|
203 |
backend="onnx",
|
204 |
)
|
205 |
|
206 |
# Verify that everything works as expected
|
207 |
+
{'''embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
208 |
print(embeddings.shape)
|
209 |
|
210 |
similarities = model.similarity(embeddings, embeddings)
|
211 |
+
print(similarities)''' if archetype in {Archetype.SENTENCE_TRANSFORMER, Archetype.SPARSE_ENCODER} else
|
212 |
+
'''predictions = model.predict([
|
213 |
+
["Which planet is known as the Red Planet?", "Mars, known for its reddish appearance, is often referred to as the Red Planet."],
|
214 |
+
["Which planet is known as the Red Planet?", "Jupiter, the largest planet in our solar system, has a prominent red spot."],
|
215 |
+
])
|
216 |
+
print(predictions)'''}
|
217 |
```
|
218 |
"""
|
219 |
|
|
|
227 |
token=token,
|
228 |
)
|
229 |
|
230 |
+
|
231 |
+
def export_to_onnx_snippet(
|
232 |
+
model_id: str, archetype: Archetype, create_pr: bool, output_model_id: str
|
233 |
+
) -> Tuple[str, str, str]:
|
234 |
+
if archetype == Archetype.OTHER:
|
235 |
+
return "", "", ""
|
236 |
+
|
237 |
+
return (
|
238 |
+
"""\
|
239 |
pip install sentence_transformers[onnx-gpu]
|
240 |
# or
|
241 |
pip install sentence_transformers[onnx]
|
242 |
+
""",
|
243 |
+
f"""\
|
244 |
+
from sentence_transformers import {archetype}
|
245 |
|
246 |
# 1. Load the model to be exported with the ONNX backend
|
247 |
+
model = {archetype}(
|
248 |
"{model_id}",
|
249 |
backend="onnx",
|
250 |
)
|
|
|
256 |
"{output_model_id}",
|
257 |
create_pr=True,
|
258 |
)'''}
|
259 |
+
""",
|
260 |
+
f"""\
|
261 |
+
from sentence_transformers import {archetype}
|
262 |
|
263 |
# 1. Load the model from the Hugging Face Hub
|
264 |
# (until merged) Use the `revision` argument to load the model from the PR
|
265 |
pr_number = 2
|
266 |
+
model = {archetype}(
|
267 |
"{output_model_id}",
|
268 |
revision=f"refs/pr/{{pr_number}}",
|
269 |
backend="onnx",
|
270 |
)
|
271 |
+
"""
|
272 |
+
+ (
|
273 |
+
"""
|
274 |
# 2. Inference works as normal
|
275 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
276 |
similarities = model.similarity(embeddings, embeddings)
|
277 |
"""
|
278 |
+
if archetype in {Archetype.SENTENCE_TRANSFORMER, Archetype.SPARSE_ENCODER}
|
279 |
+
else """
|
280 |
+
# 2. Inference works as normal
|
281 |
+
predictions = model.predict([
|
282 |
+
["Which planet is known as the Red Planet?", "Mars, known for its reddish appearance, is often referred to as the Red Planet."],
|
283 |
+
["Which planet is known as the Red Planet?", "Jupiter, the largest planet in our solar system, has a prominent red spot."],
|
284 |
+
])
|
285 |
+
"""
|
286 |
+
),
|
287 |
+
)
|
288 |
|
289 |
|
290 |
def export_to_onnx_dynamic_quantization(
|
291 |
+
model_id: str,
|
292 |
+
archetype: Archetype,
|
293 |
+
create_pr: bool,
|
294 |
+
output_model_id: str,
|
295 |
+
onnx_quantization_config: str,
|
296 |
+
token: Optional[str] = None,
|
297 |
) -> None:
|
298 |
+
if does_file_glob_exist(
|
299 |
+
output_model_id, f"onnx/model_qint8_{onnx_quantization_config}.onnx"
|
300 |
+
):
|
301 |
+
raise FileExistsError(
|
302 |
+
"The quantized ONNX model already exists in the repository"
|
303 |
+
)
|
304 |
+
|
305 |
+
if archetype == Archetype.SENTENCE_TRANSFORMER:
|
306 |
+
model = SentenceTransformer(model_id, backend="onnx")
|
307 |
+
elif archetype == Archetype.SPARSE_ENCODER:
|
308 |
+
model = SparseEncoder(model_id, backend="onnx")
|
309 |
+
elif archetype == Archetype.CROSS_ENCODER:
|
310 |
+
model = CrossEncoder(model_id, backend="onnx")
|
311 |
+
else:
|
312 |
+
return
|
313 |
|
314 |
if not create_pr and is_new_model(output_model_id):
|
315 |
model.push_to_hub(repo_id=output_model_id, token=token)
|
|
|
327 |
)
|
328 |
except ValueError:
|
329 |
# Currently, quantization with optimum has some issues if there's already an ONNX model in a subfolder
|
330 |
+
if archetype == Archetype.SENTENCE_TRANSFORMER:
|
331 |
+
model = SentenceTransformer(
|
332 |
+
model_id, backend="onnx", model_kwargs={"export": True}
|
333 |
+
)
|
334 |
+
elif archetype == Archetype.SPARSE_ENCODER:
|
335 |
+
model = SparseEncoder(
|
336 |
+
model_id, backend="onnx", model_kwargs={"export": True}
|
337 |
+
)
|
338 |
+
elif archetype == Archetype.CROSS_ENCODER:
|
339 |
+
model = CrossEncoder(
|
340 |
+
model_id, backend="onnx", model_kwargs={"export": True}
|
341 |
+
)
|
342 |
+
else:
|
343 |
+
return
|
344 |
st_export_dynamic_quantized_onnx_model(
|
345 |
model,
|
346 |
quantization_config=onnx_quantization_config,
|
|
|
351 |
finally:
|
352 |
huggingface_hub.upload_folder = original_upload_folder
|
353 |
|
354 |
+
|
355 |
def export_to_onnx_dynamic_quantization_snippet(
|
356 |
+
model_id: str,
|
357 |
+
archetype: Archetype,
|
358 |
+
create_pr: bool,
|
359 |
+
output_model_id: str,
|
360 |
+
onnx_quantization_config: str,
|
361 |
+
) -> Tuple[str, str, str]:
|
362 |
+
if archetype == Archetype.OTHER:
|
363 |
+
return "", "", ""
|
364 |
+
|
365 |
+
return (
|
366 |
+
"""\
|
367 |
pip install sentence_transformers[onnx-gpu]
|
368 |
# or
|
369 |
pip install sentence_transformers[onnx]
|
370 |
+
""",
|
371 |
+
f"""\
|
372 |
from sentence_transformers import (
|
373 |
+
{archetype},
|
374 |
export_dynamic_quantized_onnx_model,
|
375 |
)
|
376 |
|
377 |
+
# 1. Load the model to be exported with the ONNX backend
|
378 |
+
model = {archetype}(
|
379 |
"{model_id}",
|
380 |
backend="onnx",
|
381 |
)
|
|
|
388 |
push_to_hub=True,
|
389 |
{''' create_pr=True,
|
390 |
''' if create_pr else ''})
|
391 |
+
""",
|
392 |
+
f"""\
|
393 |
+
from sentence_transformers import {archetype}
|
394 |
|
395 |
# 1. Load the model from the Hugging Face Hub
|
396 |
# (until merged) Use the `revision` argument to load the model from the PR
|
397 |
pr_number = 2
|
398 |
+
model = {archetype}(
|
399 |
"{output_model_id}",
|
400 |
revision=f"refs/pr/{{pr_number}}",
|
401 |
backend="onnx",
|
402 |
model_kwargs={{"file_name": "model_qint8_{onnx_quantization_config}.onnx"}},
|
403 |
)
|
404 |
+
"""
|
405 |
+
+ (
|
406 |
+
"""
|
407 |
# 2. Inference works as normal
|
408 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
409 |
similarities = model.similarity(embeddings, embeddings)
|
410 |
"""
|
411 |
+
if archetype in {Archetype.SENTENCE_TRANSFORMER, Archetype.SPARSE_ENCODER}
|
412 |
+
else """
|
413 |
+
# 2. Inference works as normal
|
414 |
+
predictions = model.predict([
|
415 |
+
["Which planet is known as the Red Planet?", "Mars, known for its reddish appearance, is often referred to as the Red Planet."],
|
416 |
+
["Which planet is known as the Red Planet?", "Jupiter, the largest planet in our solar system, has a prominent red spot."],
|
417 |
+
])
|
418 |
+
"""
|
419 |
+
),
|
420 |
+
)
|
421 |
|
|
|
|
|
|
|
422 |
|
423 |
+
def export_to_onnx_optimization(
|
424 |
+
model_id: str,
|
425 |
+
archetype: Archetype,
|
426 |
+
create_pr: bool,
|
427 |
+
output_model_id: str,
|
428 |
+
onnx_optimization_config: str,
|
429 |
+
token: Optional[str] = None,
|
430 |
+
) -> None:
|
431 |
+
if does_file_glob_exist(
|
432 |
+
output_model_id, f"onnx/model_{onnx_optimization_config}.onnx"
|
433 |
+
):
|
434 |
+
raise FileExistsError(
|
435 |
+
"The optimized ONNX model already exists in the repository"
|
436 |
+
)
|
437 |
+
|
438 |
+
if archetype == Archetype.SENTENCE_TRANSFORMER:
|
439 |
+
model = SentenceTransformer(model_id, backend="onnx")
|
440 |
+
elif archetype == Archetype.SPARSE_ENCODER:
|
441 |
+
model = SparseEncoder(model_id, backend="onnx")
|
442 |
+
elif archetype == Archetype.CROSS_ENCODER:
|
443 |
+
model = CrossEncoder(model_id, backend="onnx")
|
444 |
+
else:
|
445 |
+
return
|
446 |
|
447 |
if not create_pr and is_new_model(output_model_id):
|
448 |
model.push_to_hub(repo_id=output_model_id, token=token)
|
|
|
461 |
finally:
|
462 |
huggingface_hub.upload_folder = original_upload_folder
|
463 |
|
464 |
+
|
465 |
+
def export_to_onnx_optimization_snippet(
|
466 |
+
model_id: str,
|
467 |
+
archetype: Archetype,
|
468 |
+
create_pr: bool,
|
469 |
+
output_model_id: str,
|
470 |
+
onnx_optimization_config: str,
|
471 |
+
) -> Tuple[str, str, str]:
|
472 |
+
if archetype == Archetype.OTHER:
|
473 |
+
return "", "", ""
|
474 |
+
|
475 |
+
return (
|
476 |
+
"""\
|
477 |
pip install sentence_transformers[onnx-gpu]
|
478 |
# or
|
479 |
pip install sentence_transformers[onnx]
|
480 |
+
""",
|
481 |
+
f"""\
|
482 |
from sentence_transformers import (
|
483 |
+
{archetype},
|
484 |
export_optimized_onnx_model,
|
485 |
)
|
486 |
|
487 |
# 1. Load the model to be optimized with the ONNX backend
|
488 |
+
model = {archetype}(
|
489 |
"{model_id}",
|
490 |
backend="onnx",
|
491 |
)
|
|
|
498 |
push_to_hub=True,
|
499 |
{''' create_pr=True,
|
500 |
''' if create_pr else ''})
|
501 |
+
""",
|
502 |
+
f"""\
|
503 |
+
from sentence_transformers import {archetype}
|
504 |
|
505 |
# 1. Load the model from the Hugging Face Hub
|
506 |
# (until merged) Use the `revision` argument to load the model from the PR
|
507 |
pr_number = 2
|
508 |
+
model = {archetype}(
|
509 |
"{output_model_id}",
|
510 |
revision=f"refs/pr/{{pr_number}}",
|
511 |
backend="onnx",
|
512 |
model_kwargs={{"file_name": "model_{onnx_optimization_config}.onnx"}},
|
513 |
)
|
514 |
+
"""
|
515 |
+
+ (
|
516 |
+
"""
|
517 |
# 2. Inference works as normal
|
518 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
519 |
similarities = model.similarity(embeddings, embeddings)
|
520 |
"""
|
521 |
+
if archetype in {Archetype.SENTENCE_TRANSFORMER, Archetype.SPARSE_ENCODER}
|
522 |
+
else """
|
523 |
+
# 2. Inference works as normal
|
524 |
+
predictions = model.predict([
|
525 |
+
["Which planet is known as the Red Planet?", "Mars, known for its reddish appearance, is often referred to as the Red Planet."],
|
526 |
+
["Which planet is known as the Red Planet?", "Jupiter, the largest planet in our solar system, has a prominent red spot."],
|
527 |
+
])
|
528 |
+
"""
|
529 |
+
),
|
530 |
+
)
|
531 |
|
532 |
|
533 |
+
def export_to_openvino(
|
534 |
+
model_id: str,
|
535 |
+
archetype: Archetype,
|
536 |
+
create_pr: bool,
|
537 |
+
output_model_id: str,
|
538 |
+
token: Optional[str] = None,
|
539 |
+
) -> None:
|
540 |
if does_file_glob_exist(output_model_id, "**/openvino_model.xml"):
|
541 |
raise FileExistsError("The OpenVINO model already exists in the repository")
|
542 |
|
543 |
+
if archetype == Archetype.SENTENCE_TRANSFORMER:
|
544 |
+
model = SentenceTransformer(model_id, backend="openvino")
|
545 |
+
elif archetype == Archetype.SPARSE_ENCODER:
|
546 |
+
model = SparseEncoder(model_id, backend="openvino")
|
547 |
+
elif archetype == Archetype.CROSS_ENCODER:
|
548 |
+
model = CrossEncoder(model_id, backend="openvino")
|
549 |
+
else:
|
550 |
+
return
|
551 |
|
552 |
commit_message = "Add exported openvino model 'openvino_model.xml'"
|
553 |
|
|
|
573 |
## Tip:
|
574 |
Consider testing this pull request before merging by loading the model from this PR with the `revision` argument:
|
575 |
```python
|
576 |
+
from sentence_transformers import {archetype}
|
577 |
|
578 |
# TODO: Fill in the PR number
|
579 |
pr_number = 2
|
580 |
+
model = {archetype}(
|
581 |
"{output_model_id}",
|
582 |
revision=f"refs/pr/{{pr_number}}",
|
583 |
backend="openvino",
|
584 |
)
|
585 |
|
586 |
# Verify that everything works as expected
|
587 |
+
{'''embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
588 |
print(embeddings.shape)
|
589 |
|
590 |
similarities = model.similarity(embeddings, embeddings)
|
591 |
+
print(similarities)''' if archetype in {Archetype.SENTENCE_TRANSFORMER, Archetype.SPARSE_ENCODER} else
|
592 |
+
'''predictions = model.predict([
|
593 |
+
["Which planet is known as the Red Planet?", "Mars, known for its reddish appearance, is often referred to as the Red Planet."],
|
594 |
+
["Which planet is known as the Red Planet?", "Jupiter, the largest planet in our solar system, has a prominent red spot."],
|
595 |
+
])
|
596 |
+
print(predictions)'''}
|
597 |
```
|
598 |
"""
|
599 |
|
|
|
607 |
token=token,
|
608 |
)
|
609 |
|
610 |
+
|
611 |
+
def export_to_openvino_snippet(
|
612 |
+
model_id: str, archetype: Archetype, create_pr: bool, output_model_id: str
|
613 |
+
) -> Tuple[str, str, str]:
|
614 |
+
if archetype == Archetype.OTHER:
|
615 |
+
return "", "", ""
|
616 |
+
|
617 |
+
return (
|
618 |
+
"""\
|
619 |
pip install sentence_transformers[openvino]
|
620 |
+
""",
|
621 |
+
f"""\
|
622 |
+
from sentence_transformers import {archetype}
|
623 |
|
624 |
# 1. Load the model to be exported with the OpenVINO backend
|
625 |
+
model = {archetype}(
|
626 |
"{model_id}",
|
627 |
backend="openvino",
|
628 |
)
|
|
|
634 |
"{output_model_id}",
|
635 |
create_pr=True,
|
636 |
)'''}
|
637 |
+
""",
|
638 |
+
f"""\
|
639 |
+
from sentence_transformers import {archetype}
|
640 |
|
641 |
# 1. Load the model from the Hugging Face Hub
|
642 |
# (until merged) Use the `revision` argument to load the model from the PR
|
643 |
pr_number = 2
|
644 |
+
model = {archetype}(
|
645 |
"{output_model_id}",
|
646 |
revision=f"refs/pr/{{pr_number}}",
|
647 |
backend="openvino",
|
648 |
)
|
649 |
+
"""
|
650 |
+
+ (
|
651 |
+
"""
|
652 |
# 2. Inference works as normal
|
653 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
654 |
similarities = model.similarity(embeddings, embeddings)
|
655 |
"""
|
656 |
+
if archetype in {Archetype.SENTENCE_TRANSFORMER, Archetype.SPARSE_ENCODER}
|
657 |
+
else """
|
658 |
+
# 2. Inference works as normal
|
659 |
+
predictions = model.predict([
|
660 |
+
["Which planet is known as the Red Planet?", "Mars, known for its reddish appearance, is often referred to as the Red Planet."],
|
661 |
+
["Which planet is known as the Red Planet?", "Jupiter, the largest planet in our solar system, has a prominent red spot."],
|
662 |
+
])
|
663 |
+
"""
|
664 |
+
),
|
665 |
+
)
|
666 |
+
|
667 |
|
668 |
def export_to_openvino_static_quantization(
|
669 |
model_id: str,
|
670 |
+
archetype: Archetype,
|
671 |
create_pr: bool,
|
672 |
output_model_id: str,
|
673 |
ov_quant_dataset_name: str,
|
|
|
677 |
ov_quant_dataset_num_samples: int,
|
678 |
token: Optional[str] = None,
|
679 |
) -> None:
|
680 |
+
if does_file_glob_exist(
|
681 |
+
output_model_id, "openvino/openvino_model_qint8_quantized.xml"
|
682 |
+
):
|
683 |
+
raise FileExistsError(
|
684 |
+
"The quantized OpenVINO model already exists in the repository"
|
685 |
+
)
|
686 |
|
687 |
+
if archetype == Archetype.SENTENCE_TRANSFORMER:
|
688 |
+
model = SentenceTransformer(model_id, backend="openvino")
|
689 |
+
elif archetype == Archetype.SPARSE_ENCODER:
|
690 |
+
model = SparseEncoder(model_id, backend="openvino")
|
691 |
+
elif archetype == Archetype.CROSS_ENCODER:
|
692 |
+
model = CrossEncoder(model_id, backend="openvino")
|
693 |
+
else:
|
694 |
+
return
|
695 |
|
696 |
if not create_pr and is_new_model(output_model_id):
|
697 |
model.push_to_hub(repo_id=output_model_id, token=token)
|
|
|
716 |
finally:
|
717 |
huggingface_hub.upload_folder = original_upload_folder
|
718 |
|
719 |
+
|
720 |
def export_to_openvino_static_quantization_snippet(
|
721 |
model_id: str,
|
722 |
+
archetype: Archetype,
|
723 |
create_pr: bool,
|
724 |
output_model_id: str,
|
725 |
ov_quant_dataset_name: str,
|
|
|
727 |
ov_quant_dataset_split: str,
|
728 |
ov_quant_dataset_column_name: str,
|
729 |
ov_quant_dataset_num_samples: int,
|
730 |
+
) -> Tuple[str, str, str]:
|
731 |
+
if archetype == Archetype.OTHER:
|
732 |
+
return "", "", ""
|
733 |
+
|
734 |
+
return (
|
735 |
+
"""\
|
736 |
pip install sentence_transformers[openvino]
|
737 |
+
""",
|
738 |
+
f"""\
|
739 |
from sentence_transformers import (
|
740 |
+
{archetype},
|
741 |
export_static_quantized_openvino_model,
|
742 |
)
|
743 |
from optimum.intel import OVQuantizationConfig
|
744 |
|
745 |
# 1. Load the model to be quantized with the OpenVINO backend
|
746 |
+
model = {archetype}(
|
747 |
"{model_id}",
|
748 |
backend="openvino",
|
749 |
)
|
|
|
762 |
push_to_hub=True,
|
763 |
{''' create_pr=True,
|
764 |
''' if create_pr else ''})
|
765 |
+
""",
|
766 |
+
f"""\
|
767 |
+
from sentence_transformers import {archetype}
|
768 |
|
769 |
# 1. Load the model from the Hugging Face Hub
|
770 |
# (until merged) Use the `revision` argument to load the model from the PR
|
771 |
pr_number = 2
|
772 |
+
model = {archetype}(
|
773 |
"{output_model_id}",
|
774 |
revision=f"refs/pr/{{pr_number}}",
|
775 |
backend="openvino",
|
776 |
model_kwargs={{"file_name": "openvino_model_qint8_quantized.xml"}},
|
777 |
)
|
778 |
+
"""
|
779 |
+
+ (
|
780 |
+
"""
|
781 |
# 2. Inference works as normal
|
782 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
783 |
similarities = model.similarity(embeddings, embeddings)
|
784 |
"""
|
785 |
+
if archetype in {Archetype.SENTENCE_TRANSFORMER, Archetype.SPARSE_ENCODER}
|
786 |
+
else """
|
787 |
+
# 2. Inference works as normal
|
788 |
+
predictions = model.predict([
|
789 |
+
["Which planet is known as the Red Planet?", "Mars, known for its reddish appearance, is often referred to as the Red Planet."],
|
790 |
+
["Which planet is known as the Red Planet?", "Jupiter, the largest planet in our solar system, has a prominent red spot."],
|
791 |
+
])
|
792 |
+
"""
|
793 |
+
),
|
794 |
+
)
|
795 |
+
|
796 |
|
797 |
def on_submit(
|
798 |
model_id,
|
|
|
811 |
profile: Optional[gr.OAuthProfile] = None,
|
812 |
):
|
813 |
if oauth_token is None or profile is None:
|
814 |
+
return (
|
815 |
+
"Commit or PR url:<br>...",
|
816 |
+
inference_snippet,
|
817 |
+
gr.Textbox(
|
818 |
+
"Please sign in with Hugging Face to use this Space", visible=True
|
819 |
+
),
|
820 |
+
)
|
821 |
|
822 |
if not model_id:
|
823 |
+
return (
|
824 |
+
"Commit or PR url:<br>...",
|
825 |
+
inference_snippet,
|
826 |
+
gr.Textbox("Please enter a model ID", visible=True),
|
827 |
+
)
|
828 |
|
829 |
if not is_sentence_transformer_model(model_id):
|
830 |
+
return (
|
831 |
+
"Commit or PR url:<br>...",
|
832 |
+
inference_snippet,
|
833 |
+
gr.Textbox(
|
834 |
+
"The source model must have a Sentence Transformers tag", visible=True
|
835 |
+
),
|
836 |
+
)
|
837 |
|
838 |
if output_model_id and "/" not in output_model_id:
|
839 |
output_model_id = f"{profile.name}/{output_model_id}"
|
840 |
|
841 |
output_model_id = output_model_id if not create_pr else model_id
|
842 |
+
archetype = get_archetype(model_id)
|
843 |
|
844 |
try:
|
845 |
if backend == Backend.ONNX.value:
|
846 |
+
export_to_onnx(
|
847 |
+
model_id, archetype, create_pr, output_model_id, token=oauth_token.token
|
848 |
+
)
|
849 |
elif backend == Backend.ONNX_DYNAMIC_QUANTIZATION.value:
|
850 |
export_to_onnx_dynamic_quantization(
|
851 |
+
model_id,
|
852 |
+
archetype,
|
853 |
+
create_pr,
|
854 |
+
output_model_id,
|
855 |
+
onnx_quantization_config,
|
856 |
+
token=oauth_token.token,
|
857 |
)
|
858 |
elif backend == Backend.ONNX_OPTIMIZATION.value:
|
859 |
export_to_onnx_optimization(
|
860 |
+
model_id,
|
861 |
+
archetype,
|
862 |
+
create_pr,
|
863 |
+
output_model_id,
|
864 |
+
onnx_optimization_config,
|
865 |
+
token=oauth_token.token,
|
866 |
)
|
867 |
elif backend == Backend.OPENVINO.value:
|
868 |
+
export_to_openvino(
|
869 |
+
model_id, archetype, create_pr, output_model_id, token=oauth_token.token
|
870 |
+
)
|
871 |
elif backend == Backend.OPENVINO_STATIC_QUANTIZATION.value:
|
872 |
export_to_openvino_static_quantization(
|
873 |
model_id,
|
874 |
+
archetype,
|
875 |
create_pr,
|
876 |
output_model_id,
|
877 |
ov_quant_dataset_name,
|
|
|
882 |
token=oauth_token.token,
|
883 |
)
|
884 |
except FileExistsError as exc:
|
885 |
+
return (
|
886 |
+
"Commit or PR url:<br>...",
|
887 |
+
inference_snippet,
|
888 |
+
gr.Textbox(str(exc), visible=True),
|
889 |
+
)
|
890 |
|
891 |
if create_pr:
|
892 |
url, num = get_last_pr(output_model_id)
|
893 |
+
return (
|
894 |
+
f"PR url:<br>{url}",
|
895 |
+
inference_snippet.replace("pr_number = 2", f"pr_number = {num}"),
|
896 |
+
gr.Textbox(visible=False),
|
897 |
+
)
|
898 |
+
|
899 |
# Remove the lines that refer to the revision argument
|
900 |
lines = inference_snippet.splitlines()
|
901 |
del lines[7]
|
902 |
del lines[4]
|
903 |
del lines[3]
|
904 |
inference_snippet = "\n".join(lines)
|
905 |
+
return (
|
906 |
+
f"Commit url:<br>{get_last_commit(output_model_id)}",
|
907 |
+
inference_snippet,
|
908 |
+
gr.Textbox(visible=False),
|
909 |
+
)
|
910 |
+
|
911 |
|
912 |
def on_change(
|
913 |
model_id,
|
|
|
925 |
profile: Optional[gr.OAuthProfile] = None,
|
926 |
) -> str:
|
927 |
if oauth_token is None or profile is None:
|
928 |
+
return (
|
929 |
+
"",
|
930 |
+
"",
|
931 |
+
"",
|
932 |
+
gr.Textbox(
|
933 |
+
"Please sign in with Hugging Face to use this Space", visible=True
|
934 |
+
),
|
935 |
+
)
|
936 |
|
937 |
if not model_id:
|
938 |
return "", "", "", gr.Textbox("Please enter a model ID", visible=True)
|
939 |
+
|
940 |
if output_model_id and "/" not in output_model_id:
|
941 |
output_model_id = f"{profile.username}/{output_model_id}"
|
942 |
|
943 |
output_model_id = output_model_id if not create_pr else model_id
|
944 |
+
archetype = get_archetype(model_id)
|
945 |
|
946 |
if backend == Backend.ONNX.value:
|
947 |
+
snippets = export_to_onnx_snippet(
|
948 |
+
model_id, archetype, create_pr, output_model_id
|
949 |
+
)
|
950 |
elif backend == Backend.ONNX_DYNAMIC_QUANTIZATION.value:
|
951 |
snippets = export_to_onnx_dynamic_quantization_snippet(
|
952 |
+
model_id, archetype, create_pr, output_model_id, onnx_quantization_config
|
953 |
)
|
954 |
elif backend == Backend.ONNX_OPTIMIZATION.value:
|
955 |
snippets = export_to_onnx_optimization_snippet(
|
956 |
+
model_id, archetype, create_pr, output_model_id, onnx_optimization_config
|
957 |
)
|
958 |
elif backend == Backend.OPENVINO.value:
|
959 |
+
snippets = export_to_openvino_snippet(
|
960 |
+
model_id, archetype, create_pr, output_model_id
|
961 |
+
)
|
962 |
elif backend == Backend.OPENVINO_STATIC_QUANTIZATION.value:
|
963 |
snippets = export_to_openvino_static_quantization_snippet(
|
964 |
model_id,
|
965 |
+
archetype,
|
966 |
create_pr,
|
967 |
output_model_id,
|
968 |
ov_quant_dataset_name,
|
|
|
973 |
)
|
974 |
else:
|
975 |
return "", "", "", gr.Textbox("Unexpected backend!", visible=True)
|
976 |
+
|
977 |
return *snippets, gr.Textbox(visible=False)
|
978 |
|
979 |
|
|
|
1000 |
with gr.Row():
|
1001 |
# Left Input Column
|
1002 |
with gr.Column(scale=2):
|
|
|
1003 |
gr.Markdown(
|
1004 |
value="""\
|
1005 |
+
### Export a SentenceTransformer, SparseEncoder, or CrossEncoder model to accelerated backends
|
1006 |
|
1007 |
+
Sentence Transformers models can be optimized for **faster inference** on CPU and GPU devices by exporting, quantizing, and optimizing them in ONNX and OpenVINO formats.
|
1008 |
+
Observe the Speeding up Inference documentation for more information:
|
1009 |
+
* [SentenceTransformer > Speeding up Inference](https://sbert.net/docs/sentence_transformer/usage/efficiency.html)
|
1010 |
+
* [SparseEncoder > Speeding up Inference](https://sbert.net/docs/sparse_encoder/usage/efficiency.html)
|
1011 |
+
* [CrossEncoder > Speeding up Inference](https://sbert.net/docs/cross_encoder/usage/efficiency.html)
|
1012 |
""",
|
1013 |
label="",
|
1014 |
container=True,
|
1015 |
)
|
1016 |
+
gr.HTML(
|
1017 |
+
value="""\
|
1018 |
<details><summary>Click to see performance benchmarks</summary>
|
1019 |
|
1020 |
<table>
|
1021 |
<thead>
|
1022 |
<tr>
|
1023 |
+
<th>SentenceTransformer GPU</th>
|
1024 |
+
<th>SentenceTransformer CPU</th>
|
1025 |
</tr>
|
1026 |
</thead>
|
1027 |
<tbody>
|
1028 |
<tr>
|
1029 |
<td>
|
1030 |
+
<img src="https://sbert.net/_images/backends_benchmark_gpu.png" alt="">
|
1031 |
</td>
|
1032 |
<td>
|
1033 |
+
<img src="https://sbert.net/_images/backends_benchmark_cpu.png" alt="">
|
1034 |
+
</td>
|
1035 |
+
</tr>
|
1036 |
+
</tbody>
|
1037 |
+
</table>
|
1038 |
+
|
1039 |
+
<table>
|
1040 |
+
<thead>
|
1041 |
+
<tr>
|
1042 |
+
<th>SparseEncoder GPU</th>
|
1043 |
+
<th>SparseEncoder CPU</th>
|
1044 |
+
</tr>
|
1045 |
+
</thead>
|
1046 |
+
<tbody>
|
1047 |
+
<tr>
|
1048 |
+
<td>
|
1049 |
+
<img src="https://sbert.net/_images/se_backends_benchmark_gpu.png" alt="">
|
1050 |
+
</td>
|
1051 |
+
<td>
|
1052 |
+
<img src="https://sbert.net/_images/se_backends_benchmark_cpu.png" alt="">
|
1053 |
+
</td>
|
1054 |
+
</tr>
|
1055 |
+
</tbody>
|
1056 |
+
</table>
|
1057 |
+
|
1058 |
+
<table>
|
1059 |
+
<thead>
|
1060 |
+
<tr>
|
1061 |
+
<th>CrossEncoder GPU</th>
|
1062 |
+
<th>CrossEncoder CPU</th>
|
1063 |
+
</tr>
|
1064 |
+
</thead>
|
1065 |
+
<tbody>
|
1066 |
+
<tr>
|
1067 |
+
<td>
|
1068 |
+
<img src="https://sbert.net/_images/ce_backends_benchmark_gpu.png" alt="">
|
1069 |
+
</td>
|
1070 |
+
<td>
|
1071 |
+
<img src="https://sbert.net/_images/ce_backends_benchmark_cpu.png" alt="">
|
1072 |
</td>
|
1073 |
</tr>
|
1074 |
</tbody>
|
|
|
1083 |
</ul>
|
1084 |
|
1085 |
</details>
|
1086 |
+
"""
|
1087 |
+
)
|
1088 |
|
1089 |
model_id = HuggingfaceHubSearch(
|
1090 |
+
label="SentenceTransformer, SparseEncoder, or CrossEncoder model to export",
|
1091 |
+
placeholder="Search for SentenceTransformer, SparseEncoder, or CrossEncoder models on Hugging Face",
|
1092 |
search_type="model",
|
1093 |
)
|
1094 |
create_pr = gr.Checkbox(
|
|
|
1119 |
gr.Markdown(
|
1120 |
value="[ONNX Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#onnx)",
|
1121 |
container=True,
|
1122 |
+
elem_classes=["small-text"],
|
1123 |
)
|
1124 |
with gr.Group(visible=False) as onnx_dynamic_quantization_group:
|
1125 |
onnx_quantization_config = gr.Radio(
|
1126 |
choices=["arm64", "avx2", "avx512", "avx512_vnni"],
|
1127 |
value="avx512_vnni",
|
1128 |
label="Quantization config",
|
1129 |
+
info="[ONNX Quantization Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#quantizing-onnx-models)",
|
1130 |
)
|
1131 |
with gr.Group(visible=False) as onnx_optimization_group:
|
1132 |
onnx_optimization_config = gr.Radio(
|
1133 |
choices=["O1", "O2", "O3", "O4"],
|
1134 |
value="O4",
|
1135 |
label="Optimization config",
|
1136 |
+
info="[ONNX Optimization Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#optimizing-onnx-models)",
|
1137 |
)
|
1138 |
with gr.Group(visible=False) as openvino_group:
|
1139 |
gr.Markdown(
|
1140 |
value="[OpenVINO Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#openvino)",
|
1141 |
container=True,
|
1142 |
+
elem_classes=["small-text"],
|
1143 |
)
|
1144 |
with gr.Group(visible=False) as openvino_static_quantization_group:
|
1145 |
gr.Markdown(
|
1146 |
value="[OpenVINO Quantization Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#quantizing-openvino-models)",
|
1147 |
container=True,
|
1148 |
+
elem_classes=["small-text"],
|
1149 |
)
|
1150 |
ov_quant_dataset_name = HuggingfaceHubSearch(
|
1151 |
value="nyu-mll/glue",
|
images/backends_benchmark_cpu.png
DELETED
Binary file (63.2 kB)
|
|
images/backends_benchmark_gpu.png
DELETED
Binary file (59.9 kB)
|
|
requirements.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
sentence_transformers[onnx-gpu,openvino]==
|
2 |
onnx==1.16.1
|
3 |
https://huggingface.co/spaces/CISCai/chat-template-editor/resolve/08c8e90c53677ae70c66b3d90bf4e63a173b5505/gradio_huggingfacehub_search-0.0.8-py3-none-any.whl
|
4 |
-
gradio[oauth]==5.
|
5 |
-
huggingface_hub==0.
|
|
|
1 |
+
sentence_transformers[onnx-gpu,openvino]==5.1.0
|
2 |
onnx==1.16.1
|
3 |
https://huggingface.co/spaces/CISCai/chat-template-editor/resolve/08c8e90c53677ae70c66b3d90bf4e63a173b5505/gradio_huggingfacehub_search-0.0.8-py3-none-any.whl
|
4 |
+
gradio[oauth]==5.42.0
|
5 |
+
huggingface_hub==0.34.4
|