Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,90 +1,95 @@
|
|
1 |
-
from functools import lru_cache
|
2 |
-
import os
|
3 |
-
from flask import Flask, request, jsonify, render_template
|
4 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
-
import torch
|
6 |
-
import logging
|
7 |
-
import time
|
8 |
-
|
9 |
-
app = Flask(__name__)
|
10 |
-
logging.basicConfig(level=logging.INFO)
|
11 |
-
logger = logging.getLogger(__name__)
|
12 |
-
|
13 |
-
# Önbellek dizini ayarı
|
14 |
-
os.environ['TRANSFORMERS_CACHE'] = '/app/cache'
|
15 |
-
os.makedirs('/app/cache', exist_ok=True)
|
16 |
-
|
17 |
-
# Model konfigürasyonu
|
18 |
-
MODEL_NAME = "redrussianarmy/gpt2-turkish-cased"
|
19 |
-
|
20 |
-
@lru_cache(maxsize=1)
|
21 |
-
def load_model():
|
22 |
-
try:
|
23 |
-
logger.info("Model yükleniyor...")
|
24 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
90 |
app.run(host='0.0.0.0', port=7860, threaded=False)
|
|
|
1 |
+
from functools import lru_cache
|
2 |
+
import os
|
3 |
+
from flask import Flask, request, jsonify, render_template
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
import torch
|
6 |
+
import logging
|
7 |
+
import time
|
8 |
+
|
9 |
+
app = Flask(__name__)
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
# Önbellek dizini ayarı
|
14 |
+
os.environ['TRANSFORMERS_CACHE'] = '/app/cache'
|
15 |
+
os.makedirs('/app/cache', exist_ok=True)
|
16 |
+
|
17 |
+
# Model konfigürasyonu
|
18 |
+
MODEL_NAME = "redrussianarmy/gpt2-turkish-cased"
|
19 |
+
|
20 |
+
@lru_cache(maxsize=1)
|
21 |
+
def load_model():
|
22 |
+
try:
|
23 |
+
logger.info("Model yükleniyor...")
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
25 |
+
|
26 |
+
# Pad token kontrolü ve ayarlama
|
27 |
+
if tokenizer.pad_token is None:
|
28 |
+
tokenizer.pad_token = tokenizer.eos_token
|
29 |
+
|
30 |
+
model = AutoModelForCausalLM.from_pretrained(
|
31 |
+
MODEL_NAME,
|
32 |
+
torch_dtype=torch.float16
|
33 |
+
)
|
34 |
+
model = model.to('cpu')
|
35 |
+
torch.set_num_threads(1)
|
36 |
+
logger.info("Model başarıyla yüklendi")
|
37 |
+
return model, tokenizer
|
38 |
+
except Exception as e:
|
39 |
+
logger.error(f"Model yükleme hatası: {str(e)}")
|
40 |
+
raise RuntimeError(f"Model yüklenemedi: {str(e)}")
|
41 |
+
|
42 |
+
@app.route('/')
|
43 |
+
def home():
|
44 |
+
return render_template('index.html')
|
45 |
+
|
46 |
+
@app.route('/health')
|
47 |
+
def health_check():
|
48 |
+
try:
|
49 |
+
load_model()
|
50 |
+
return jsonify({"status": "healthy"}), 200
|
51 |
+
except Exception as e:
|
52 |
+
return jsonify({"status": "unhealthy", "error": str(e)}), 500
|
53 |
+
|
54 |
+
@app.route('/generate', methods=['POST'])
|
55 |
+
def generate():
|
56 |
+
try:
|
57 |
+
start_time = time.time()
|
58 |
+
data = request.get_json()
|
59 |
+
prompt = data.get('prompt', '')[:300] # 300 karakter sınır
|
60 |
+
|
61 |
+
if not prompt:
|
62 |
+
return jsonify({"error": "Prompt gereklidir", "success": False}), 400
|
63 |
+
|
64 |
+
model, tokenizer = load_model()
|
65 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to('cpu')
|
66 |
+
|
67 |
+
with torch.no_grad():
|
68 |
+
outputs = model.generate(
|
69 |
+
inputs.input_ids,
|
70 |
+
attention_mask=inputs.attention_mask,
|
71 |
+
max_length=100,
|
72 |
+
do_sample=True,
|
73 |
+
top_k=40,
|
74 |
+
temperature=0.7,
|
75 |
+
pad_token_id=tokenizer.pad_token_id # Düzeltildi: eos_token yerine pad_token
|
76 |
+
)
|
77 |
+
|
78 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
79 |
+
processing_time = round(time.time() - start_time, 2)
|
80 |
+
|
81 |
+
return jsonify({
|
82 |
+
"result": result,
|
83 |
+
"success": True,
|
84 |
+
"processing_time": processing_time
|
85 |
+
})
|
86 |
+
|
87 |
+
except Exception as e:
|
88 |
+
logger.error(f"Hata: {str(e)}")
|
89 |
+
return jsonify({
|
90 |
+
"error": str(e),
|
91 |
+
"success": False
|
92 |
+
}), 500
|
93 |
+
|
94 |
+
if __name__ == '__main__':
|
95 |
app.run(host='0.0.0.0', port=7860, threaded=False)
|