File size: 5,467 Bytes
2ca06ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234ed52
 
 
 
2ca06ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# https://huggingface.co/tasks/token-classification
# https://huggingface.co/spacy/en_core_web_sm
# pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl

import gradio as gr
import os
import time
import openai
import numpy as np
import pandas as pd
import spacy
import en_core_web_sm
import plotly.express as px

openai.organization = os.environ.get('ORGANIZATION')
openai.api_key = os.environ.get('API_KEY')

nlp = spacy.load("en_core_web_sm")

# The following text inside one of this categories: Entertainment, Business, Politics 
# This dull recreation of the animated film doesn’t strive for anything more than what was contained in the original version of this film and actually delivers less.
# Category: Entertainment

def text_to_sentences(text):
  doc = nlp(text)
  sentences = [ sentence.text for sentence in list(doc.sents) ]
  # print(sentences[:3])
  return sentences
 
def calculate_embeddings_with_gpt3(text, engine="text-similarity-davinci-001", interval = 1.5, verbose=True):
  if verbose:
    print(f'Calculating embedding for {text}...')
  time.sleep(interval)
  response = openai.Embedding.create(
    input=text,
    engine=engine
  )
  embedding = response['data'][0]['embedding']
  return embedding
 
def gpt3_zero_shot_classification(text, labels):
  
  df_sentences = pd.DataFrame(columns=['line', 'sentence', 'embedding'])
  for idx, sentence in enumerate(text_to_sentences(text)):
    embedding = calculate_embeddings_with_gpt3(sentence)
    # Create new row
    new_row = {
      'line': idx + 1,
      'sentence': sentence,
      'embedding': embedding
    }
    df_sentences = df_sentences.append(new_row, ignore_index=True)
  # print(df_sentences.shape)
  # df_sentences.head()
  
  
  
  targets = np.array([ np.array(value[0]) for value in df_phrases[["embedding"]].values ])
  # print(f"targets:{targets.shape}")
  df_cosines = pd.DataFrame(columns=['line'])

  for i, row in df_sentences.iterrows():
    line = f'{row["line"]:03}'
    # print(f'Calculating cosines for [ {line} ] {row["sentence"][:50]}...')
    source = np.array(row["embedding"])
    cosine = np.dot(targets,source)/(np.linalg.norm(targets, axis=1)*np.linalg.norm(source))
    # Create new row
    new_row = dict([(f"Cosine{f'{key:02}'}", value) for key, value in enumerate(cosine.flatten(), 1)])
    new_row["line"] = row["line"]
    df_cosines = df_cosines.append(new_row, ignore_index=True)

  df_cosines['line'] = df_cosines['line'].astype('int')
  # print(df_cosines.shape)
  # df_cosines.head(3)

  df_comparison = df_cosines #[(df_cosines.filter(regex='Cosine') > threshold).any(axis=1)]
  # print(df_comparison.shape)
  # df_comparison.head(3)

  threshold = threshold / 100

  df_results = pd.DataFrame(columns=['line', 'sentence', 'phrase', 'category', 'tag', 'similarity'])

  for i, row in df_comparison.iterrows():
    for n in range(1,64+1):
      col = f"Cosine{f'{n:02}'}"
      # if row[col] > threshold:
      phrase = df_phrases.loc[[ n - 1 ]]
      new_row = { 
        'line': row["line"],
        'sentence': df_sentences.at[int(row["line"])-1,"sentence"],
        'phrase': df_phrases.at[n-1,"example"],
        'category': df_phrases.at[n-1,"category"],
        'tag': df_phrases.at[n-1,"label"],
        'similarity': row[col]
      }
      df_results = df_results.append(new_row, ignore_index=True)

  df_results['line'] = df_cosines['line'].astype('int')
  # print(df_results.shape)
  # df_results.head(3)

  df_summary = df_results.groupby(['tag'])['similarity'].agg('max').to_frame()
  df_summary['ok'] = np.where(df_summary['similarity'] > threshold, True, False)
  # df_summary

  fig = px.bar(
    df_summary,
    y='similarity',
    color='ok',
    color_discrete_map={ True: px.colors.qualitative.Plotly[2], False: px.colors.qualitative.Set2[7] },
    text='similarity',
    text_auto='.3f',
    labels={'tag': 'Category', 'similarity': 'Similarity'},
    title = f"{text[:200]}..."
  )
  fig.add_shape( # add a horizontal "target" line
    type="line", line_color="salmon", line_width=3, opacity=1, line_dash="dot",
    x0=0, x1=1, xref="paper", y0=threshold, y1=threshold, yref="y"
  )
  fig.update_traces(textfont_size=24, textangle=0, textposition="inside", cliponaxis=False)
  fig.update_yaxes(range=[0, 1])  
  # fig.show()

  details = df_results.drop(labels='line',axis=1).sort_values(['tag','similarity'],ascending=[True,False]).groupby('tag').head(3).reset_index()    .drop(labels='index',axis=1)
  
  res = df_summary['similarity'].to_dict()

  return res, fig, details

# Gradio UI

with gr.Blocks(css=".gradio-container { background-color: white; }") as demo:
  gr.Markdown(f"# GPT-3 Zero shot classification app")
  with gr.Row():
    context = gr.Textbox(lines=3, label="Context", placeholder="Context Here...")   
  with gr.Row():
    threshold = gr.Slider(0, 100, 80)
  btn = gr.Button(value="Analyze!", variant="primary")
  with gr.Row():
    label = gr.Label()
    plot = gr.Plot()
  with gr.Row():
    grid = gr.Dataframe(wrap=True)
  btn.click(fn=gpt3_zero_shot_classification, inputs=[context,threshold], outputs=[label,plot,grid])
  gr.Examples(
    [
      [ "", "Entertainment, Business, Politics" ],
      [ "", "Entertainment, Business, Politics" ],
      [ "", "Entertainment, Business, Politics" ],
      [ "", "Entertainment, Business, Politics" ]
    ],
    [context, threshold],
    fn=gpt3_zero_shot_classification
  )

demo.launch(debug=True)