Spaces:
Running
on
L4
Running
on
L4
Update app.py
Browse files
app.py
CHANGED
@@ -27,44 +27,37 @@ sam_model = SamModel.from_pretrained("facebook/sam-vit-base", device_map="auto",
|
|
27 |
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
28 |
|
29 |
@spaces.GPU
|
30 |
-
def
|
31 |
if input_boxes is not None:
|
32 |
input_boxes = [input_boxes]
|
33 |
|
34 |
-
|
|
|
|
|
|
|
35 |
original_sizes = inputs["original_sizes"]
|
36 |
reshaped_sizes = inputs["reshaped_input_sizes"]
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
scores = outputs.iou_scores
|
47 |
return masks, scores
|
48 |
|
49 |
-
@spaces.GPU
|
50 |
-
def predict_masks_and_scores_sam(raw_image, input_points=None, input_boxes=None):
|
51 |
-
if input_boxes is not None:
|
52 |
-
input_boxes = [input_boxes]
|
53 |
-
|
54 |
-
inputs = sam_processor(raw_image, input_boxes=input_boxes, input_points=input_points, return_tensors="pt")
|
55 |
-
original_sizes = inputs["original_sizes"]
|
56 |
-
reshaped_sizes = inputs["reshaped_input_sizes"]
|
57 |
-
|
58 |
-
inputs = inputs.to(sam_model.device)
|
59 |
-
|
60 |
-
with torch.no_grad():
|
61 |
-
outputs = sam_model(**inputs)
|
62 |
-
|
63 |
-
masks = sam_processor.image_processor.post_process_masks(
|
64 |
-
outputs.pred_masks.cpu(), original_sizes, reshaped_sizes
|
65 |
-
)
|
66 |
-
scores = outputs.iou_scores
|
67 |
-
return masks, scores
|
68 |
|
69 |
|
70 |
def process_inputs(prompts):
|
@@ -88,8 +81,8 @@ def process_inputs(prompts):
|
|
88 |
input_points = [input_points] if input_points else None
|
89 |
user_image = prompts['image']
|
90 |
|
91 |
-
sam_masks, sam_scores =
|
92 |
-
sam_hq_masks, sam_hq_scores =
|
93 |
|
94 |
if input_boxes and input_points:
|
95 |
img1_b64 = show_all_annotations_on_image_base64(user_image, sam_masks[0][0], sam_scores[:, 0, :], input_boxes[0], input_points[0], model_name='SAM')
|
|
|
27 |
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
28 |
|
29 |
@spaces.GPU
|
30 |
+
def predict_masks_and_scores(model_id, raw_image, input_points=None, input_boxes=None):
|
31 |
if input_boxes is not None:
|
32 |
input_boxes = [input_boxes]
|
33 |
|
34 |
+
if model_id == 'sam':
|
35 |
+
inputs = sam_processor(raw_image, input_boxes=input_boxes, input_points=input_points, return_tensors="pt")
|
36 |
+
else:
|
37 |
+
inputs = sam_hq_processor(raw_image, input_boxes=input_boxes, input_points=input_points, return_tensors="pt")
|
38 |
original_sizes = inputs["original_sizes"]
|
39 |
reshaped_sizes = inputs["reshaped_input_sizes"]
|
40 |
|
41 |
+
if model_id == 'sam':
|
42 |
+
inputs = inputs.to(sam_model.device)
|
43 |
+
with torch.no_grad():
|
44 |
+
outputs = sam_model(**inputs)
|
45 |
+
else:
|
46 |
+
inputs = inputs.to(sam_hq_model.device)
|
47 |
+
with torch.no_grad():
|
48 |
+
outputs = sam_hq_model(**inputs)
|
49 |
+
|
50 |
+
if model_id == 'sam':
|
51 |
+
masks = sam_processor.image_processor.post_process_masks(
|
52 |
+
outputs.pred_masks.cpu(), original_sizes, reshaped_sizes
|
53 |
+
)
|
54 |
+
else:
|
55 |
+
masks = sam_hq_processor.image_processor.post_process_masks(
|
56 |
+
outputs.pred_masks.cpu(), original_sizes, reshaped_sizes
|
57 |
+
)
|
58 |
scores = outputs.iou_scores
|
59 |
return masks, scores
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
def process_inputs(prompts):
|
|
|
81 |
input_points = [input_points] if input_points else None
|
82 |
user_image = prompts['image']
|
83 |
|
84 |
+
sam_masks, sam_scores = predict_masks_and_scores('sam', user_image, input_boxes=input_boxes, input_points=input_points)
|
85 |
+
sam_hq_masks, sam_hq_scores = predict_masks_and_scores('sam_hq', user_image, input_boxes=input_boxes, input_points=input_points)
|
86 |
|
87 |
if input_boxes and input_points:
|
88 |
img1_b64 = show_all_annotations_on_image_base64(user_image, sam_masks[0][0], sam_scores[:, 0, :], input_boxes[0], input_points[0], model_name='SAM')
|