Spaces:
Running
on
L4
Running
on
L4
Commit
·
d6ff06e
1
Parent(s):
6afc369
Started Space
Browse files- .gitattributes +2 -0
- app.py +177 -0
- examples.json +51 -0
- images/image_0.png +3 -0
- images/image_1.png +3 -0
- images/image_2.png +3 -0
- images/image_3.png +3 -0
- images/image_4.png +3 -0
- images/image_5.png +3 -0
- images/image_6.png +3 -0
- images/original_image_0.png +3 -0
- images/original_image_1.png +3 -0
- images/original_image_2.png +3 -0
- images/original_image_3.png +3 -0
- images/original_image_4.png +3 -0
- images/original_image_5.png +3 -0
- images/original_image_6.png +3 -0
- requirements.txt +8 -0
- utils.py +148 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import spaces
|
4 |
+
import json
|
5 |
+
import base64
|
6 |
+
from io import BytesIO
|
7 |
+
from transformers import SamHQModel, SamHQProcessor, SamModel, SamProcessor
|
8 |
+
import os
|
9 |
+
import pandas as pd
|
10 |
+
from utils import *
|
11 |
+
from PIL import Image
|
12 |
+
|
13 |
+
# Carga de modelos
|
14 |
+
sam_hq_model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-huge")
|
15 |
+
sam_hq_processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-huge")
|
16 |
+
|
17 |
+
sam_model = SamModel.from_pretrained("facebook/sam-vit-huge")
|
18 |
+
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
19 |
+
|
20 |
+
@spaces.GPU
|
21 |
+
def predict_masks_and_scores(model, processor, raw_image, input_points=None, input_boxes=None):
|
22 |
+
if input_boxes is not None:
|
23 |
+
input_boxes = [input_boxes]
|
24 |
+
inputs = processor(raw_image, input_boxes=input_boxes, input_points=input_points, return_tensors="pt")
|
25 |
+
with torch.no_grad():
|
26 |
+
outputs = model(**inputs)
|
27 |
+
|
28 |
+
masks = processor.image_processor.post_process_masks(
|
29 |
+
outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu()
|
30 |
+
)
|
31 |
+
scores = outputs.iou_scores
|
32 |
+
return masks, scores
|
33 |
+
|
34 |
+
def encode_pil_to_base64(pil_image):
|
35 |
+
buffer = BytesIO()
|
36 |
+
pil_image.save(buffer, format="PNG")
|
37 |
+
return base64.b64encode(buffer.getvalue()).decode("utf-8")
|
38 |
+
|
39 |
+
def compare_images_points_and_masks(user_image, input_boxes, input_points):
|
40 |
+
for example_path, example_data in example_data_map.items():
|
41 |
+
if example_data["size"] == list(user_image.size):
|
42 |
+
user_image = Image.open(example_data['original_image_path'])
|
43 |
+
input_boxes = input_boxes.values.tolist()
|
44 |
+
input_points = input_points.values.tolist()
|
45 |
+
|
46 |
+
input_boxes = [[[int(coord) for coord in box] for box in input_boxes if any(box)]]
|
47 |
+
input_points = [[[int(coord) for coord in point] for point in input_points if any(point)]]
|
48 |
+
|
49 |
+
input_boxes = input_boxes if input_boxes[0] else None
|
50 |
+
input_points = input_points if input_points[0] else None
|
51 |
+
|
52 |
+
sam_masks, sam_scores = predict_masks_and_scores(sam_model, sam_processor, user_image, input_boxes=input_boxes, input_points=input_points)
|
53 |
+
sam_hq_masks, sam_hq_scores = predict_masks_and_scores(sam_hq_model, sam_hq_processor, user_image, input_boxes=input_boxes, input_points=input_points)
|
54 |
+
|
55 |
+
if input_boxes and input_points:
|
56 |
+
img1_b64 = show_all_annotations_on_image_base64(user_image, sam_masks[0][0], sam_scores[:, 0, :], input_boxes[0], input_points[0], model_name='SAM')
|
57 |
+
img2_b64 = show_all_annotations_on_image_base64(user_image, sam_hq_masks[0][0], sam_hq_scores[:, 0, :], input_boxes[0], input_points[0], model_name='SAM_HQ')
|
58 |
+
elif input_boxes:
|
59 |
+
img1_b64 = show_all_annotations_on_image_base64(user_image, sam_masks[0][0], sam_scores[:, 0, :], input_boxes[0], None, model_name='SAM')
|
60 |
+
img2_b64 = show_all_annotations_on_image_base64(user_image, sam_hq_masks[0][0], sam_hq_scores[:, 0, :], input_boxes[0], None, model_name='SAM_HQ')
|
61 |
+
elif input_points:
|
62 |
+
img1_b64 = show_all_annotations_on_image_base64(user_image, sam_masks[0][0], sam_scores[:, 0, :], None, input_points[0], model_name='SAM')
|
63 |
+
img2_b64 = show_all_annotations_on_image_base64(user_image, sam_hq_masks[0][0], sam_hq_scores[:, 0, :], None, input_points[0], model_name='SAM_HQ')
|
64 |
+
|
65 |
+
print('user_image', user_image)
|
66 |
+
print("img1_b64", img1_b64)
|
67 |
+
print("img2_b64", img2_b64)
|
68 |
+
|
69 |
+
html_code = f"""
|
70 |
+
<div style="position: relative; width: 100%; max-width: 600px; margin: 0 auto;" id="imageCompareContainer">
|
71 |
+
<div style="position: relative; width: 100%;">
|
72 |
+
<img src="data:image/png;base64,{img1_b64}" style="width:100%; display:block;">
|
73 |
+
<div id="topWrapper" style="position:absolute; top:0; left:0; width:100%; overflow:hidden;">
|
74 |
+
<img id="topImage" src="data:image/png;base64,{img2_b64}" style="width:100%;">
|
75 |
+
</div>
|
76 |
+
<div id="sliderLine" style="position:absolute; top:0; left:0; width:2px; height:100%; background-color:red; pointer-events:none;"></div>
|
77 |
+
</div>
|
78 |
+
<input type="range" min="0" max="100" value="0"
|
79 |
+
style="width:100%; margin-top: 10px;"
|
80 |
+
oninput="
|
81 |
+
const val = this.value;
|
82 |
+
const container = document.getElementById('imageCompareContainer');
|
83 |
+
const width = container.offsetWidth;
|
84 |
+
const clipValue = 100 - val;
|
85 |
+
document.getElementById('topImage').style.clipPath = 'inset(0 ' + clipValue + '% 0 0)';
|
86 |
+
document.getElementById('sliderLine').style.left = (width * val / 100) + 'px';
|
87 |
+
">
|
88 |
+
</div>
|
89 |
+
"""
|
90 |
+
return html_code
|
91 |
+
|
92 |
+
def load_examples(json_file="examples.json"):
|
93 |
+
with open(json_file, "r") as f:
|
94 |
+
examples = json.load(f)
|
95 |
+
return examples
|
96 |
+
|
97 |
+
examples = load_examples()
|
98 |
+
example_paths = [example["image_path"] for example in examples]
|
99 |
+
example_data_map = {
|
100 |
+
example["image_path"]: {
|
101 |
+
"original_image_path": example["original_image_path"],
|
102 |
+
"points": example["points"],
|
103 |
+
"boxes": example["boxes"],
|
104 |
+
"size": example["size"]
|
105 |
+
}
|
106 |
+
for example in examples
|
107 |
+
}
|
108 |
+
|
109 |
+
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="emerald")
|
110 |
+
with gr.Blocks(theme=theme, title="🔍 Compare SAM vs SAM-HQ") as demo:
|
111 |
+
image_path_box = gr.Textbox(visible=False)
|
112 |
+
gr.Markdown("## 🔍 Compare SAM vs SAM-HQ")
|
113 |
+
gr.Markdown("Compare the performance of SAM and SAM-HQ on various images. Click on an example to load it")
|
114 |
+
gr.Markdown("[SAM-HQ](https://huggingface.co/syscv-community/sam-hq-vit-huge) - [SAM](https://huggingface.co/facebook/sam-vit-huge)")
|
115 |
+
|
116 |
+
with gr.Row():
|
117 |
+
image_input = gr.Image(
|
118 |
+
type="pil",
|
119 |
+
label="Example image (click below to load)",
|
120 |
+
interactive=False,
|
121 |
+
height=500,
|
122 |
+
show_label=True
|
123 |
+
)
|
124 |
+
|
125 |
+
gr.Examples(
|
126 |
+
examples=example_paths,
|
127 |
+
inputs=[image_input],
|
128 |
+
label="Click an example to try 👇",
|
129 |
+
)
|
130 |
+
|
131 |
+
result_html = gr.HTML(elem_id="result-html")
|
132 |
+
|
133 |
+
with gr.Row():
|
134 |
+
points_input = gr.Dataframe(
|
135 |
+
headers=["x", "y"],
|
136 |
+
label="Points",
|
137 |
+
datatype=["number", "number"],
|
138 |
+
col_count=(2, "fixed")
|
139 |
+
)
|
140 |
+
boxes_input = gr.Dataframe(
|
141 |
+
headers=["x0", "y0", "x1", "y1"],
|
142 |
+
label="Boxes",
|
143 |
+
datatype=["number", "number", "number", "number"],
|
144 |
+
col_count=(4, "fixed")
|
145 |
+
)
|
146 |
+
|
147 |
+
def on_image_change(image):
|
148 |
+
for example_path, example_data in example_data_map.items():
|
149 |
+
print(image.size)
|
150 |
+
if example_data["size"] == list(image.size):
|
151 |
+
return example_data["points"], example_data["boxes"]
|
152 |
+
return [], []
|
153 |
+
|
154 |
+
image_input.change(
|
155 |
+
fn=on_image_change,
|
156 |
+
inputs=[image_input],
|
157 |
+
outputs=[points_input, boxes_input]
|
158 |
+
)
|
159 |
+
|
160 |
+
compare_button = gr.Button("Compare points and masks")
|
161 |
+
compare_button.click(fn=compare_images_points_and_masks, inputs=[image_input, boxes_input, points_input], outputs=result_html)
|
162 |
+
|
163 |
+
gr.HTML("""
|
164 |
+
<style>
|
165 |
+
#result-html {
|
166 |
+
min-height: 500px;
|
167 |
+
border: 1px solid #ccc;
|
168 |
+
padding: 10px;
|
169 |
+
box-sizing: border-box;
|
170 |
+
background-color: #fff;
|
171 |
+
border-radius: 8px;
|
172 |
+
box-shadow: 0 2px 6px rgba(0, 0, 0, 0.1);
|
173 |
+
}
|
174 |
+
</style>
|
175 |
+
""")
|
176 |
+
|
177 |
+
demo.launch()
|
examples.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"image_path": "./images/image_0.png",
|
4 |
+
"original_image_path": "./images/original_image_0.png",
|
5 |
+
"points": null,
|
6 |
+
"boxes": [[4,13,1007,1023]],
|
7 |
+
"size": [1024, 1024]
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"image_path": "./images/image_1.png",
|
11 |
+
"original_image_path": "./images/original_image_1.png",
|
12 |
+
"points": null,
|
13 |
+
"boxes": [[230, 99, 694, 670]],
|
14 |
+
"size": [768, 768]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"image_path": "./images/image_2.png",
|
18 |
+
"original_image_path": "./images/original_image_2.png",
|
19 |
+
"points": [[495,518],[217,140]],
|
20 |
+
"boxes": null,
|
21 |
+
"size": [894, 1000]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"image_path": "./images/image_3.png",
|
25 |
+
"original_image_path": "./images/original_image_3.png",
|
26 |
+
"points": [[111, 241],[249, 317],[375, 190]],
|
27 |
+
"boxes": null,
|
28 |
+
"size": [512, 512]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"image_path": "./images/image_4.png",
|
32 |
+
"original_image_path": "./images/original_image_4.png",
|
33 |
+
"points": null,
|
34 |
+
"boxes": [[128, 152, 1880, 1838]],
|
35 |
+
"size": [2048, 2048]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"image_path": "./images/image_5.png",
|
39 |
+
"original_image_path": "./images/original_image_5.png",
|
40 |
+
"points": [[373,363], [452, 575]],
|
41 |
+
"boxes": null,
|
42 |
+
"size": [1024, 683]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"image_path": "./images/image_6.png",
|
46 |
+
"original_image_path": "./images/original_image_6.png",
|
47 |
+
"points": null,
|
48 |
+
"boxes": [[181, 196, 757, 495]],
|
49 |
+
"size": [800, 533]
|
50 |
+
}
|
51 |
+
]
|
images/image_0.png
ADDED
![]() |
Git LFS Details
|
images/image_1.png
ADDED
![]() |
Git LFS Details
|
images/image_2.png
ADDED
![]() |
Git LFS Details
|
images/image_3.png
ADDED
![]() |
Git LFS Details
|
images/image_4.png
ADDED
![]() |
Git LFS Details
|
images/image_5.png
ADDED
![]() |
Git LFS Details
|
images/image_6.png
ADDED
![]() |
Git LFS Details
|
images/original_image_0.png
ADDED
![]() |
Git LFS Details
|
images/original_image_1.png
ADDED
![]() |
Git LFS Details
|
images/original_image_2.png
ADDED
![]() |
Git LFS Details
|
images/original_image_3.png
ADDED
![]() |
Git LFS Details
|
images/original_image_4.png
ADDED
![]() |
Git LFS Details
|
images/original_image_5.png
ADDED
![]() |
Git LFS Details
|
images/original_image_6.png
ADDED
![]() |
Git LFS Details
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
huggingface_hub
|
3 |
+
requests
|
4 |
+
pillow
|
5 |
+
torch
|
6 |
+
git+https://github.com/huggingface/transformers.git
|
7 |
+
matplotlib
|
8 |
+
numpy
|
utils.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
import base64
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
def fig_to_base64(fig):
|
9 |
+
buf = BytesIO()
|
10 |
+
fig.savefig(buf, format='png', bbox_inches='tight')
|
11 |
+
plt.close(fig)
|
12 |
+
buf.seek(0)
|
13 |
+
return base64.b64encode(buf.getvalue()).decode()
|
14 |
+
|
15 |
+
def show_mask(mask, ax, random_color=False):
|
16 |
+
if random_color:
|
17 |
+
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
18 |
+
else:
|
19 |
+
color = np.array([30/255, 144/255, 255/255, 0.6])
|
20 |
+
h, w = mask.shape[-2:]
|
21 |
+
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
22 |
+
ax.imshow(mask_image)
|
23 |
+
|
24 |
+
def show_box(box, ax):
|
25 |
+
x0, y0 = box[0], box[1]
|
26 |
+
w, h = box[2] - box[0], box[3] - box[1]
|
27 |
+
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
28 |
+
|
29 |
+
def show_points(coords, labels, ax, marker_size=375):
|
30 |
+
pos_points = coords[labels==1]
|
31 |
+
neg_points = coords[labels==0]
|
32 |
+
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
|
33 |
+
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
|
34 |
+
|
35 |
+
def show_boxes_on_image_base64(raw_image, boxes):
|
36 |
+
fig, ax = plt.subplots(figsize=(10,10))
|
37 |
+
ax.imshow(raw_image)
|
38 |
+
for box in boxes:
|
39 |
+
show_box(box, ax)
|
40 |
+
ax.axis('off')
|
41 |
+
return fig_to_base64(fig)
|
42 |
+
|
43 |
+
def show_points_on_image_base64(raw_image, input_points, input_labels=None):
|
44 |
+
fig, ax = plt.subplots(figsize=(10,10))
|
45 |
+
ax.imshow(raw_image)
|
46 |
+
input_points = np.array(input_points)
|
47 |
+
labels = np.ones_like(input_points[:, 0]) if input_labels is None else np.array(input_labels)
|
48 |
+
show_points(input_points, labels, ax)
|
49 |
+
ax.axis('off')
|
50 |
+
return fig_to_base64(fig)
|
51 |
+
|
52 |
+
def show_points_and_boxes_on_image_base64(raw_image, boxes, input_points, input_labels=None):
|
53 |
+
fig, ax = plt.subplots(figsize=(10,10))
|
54 |
+
ax.imshow(raw_image)
|
55 |
+
input_points = np.array(input_points)
|
56 |
+
labels = np.ones_like(input_points[:, 0]) if input_labels is None else np.array(input_labels)
|
57 |
+
show_points(input_points, labels, ax)
|
58 |
+
for box in boxes:
|
59 |
+
show_box(box, ax)
|
60 |
+
ax.axis('off')
|
61 |
+
return fig_to_base64(fig)
|
62 |
+
|
63 |
+
def show_masks_on_image_base64(raw_image, masks, scores):
|
64 |
+
if len(masks.shape) == 4:
|
65 |
+
masks = masks.squeeze()
|
66 |
+
if scores.shape[0] == 1:
|
67 |
+
scores = scores.squeeze()
|
68 |
+
|
69 |
+
nb_predictions = scores.shape[-1]
|
70 |
+
print(f"Number of predictions: {nb_predictions}")
|
71 |
+
fig, axes = plt.subplots(1, nb_predictions, figsize=(5 * nb_predictions, 5))
|
72 |
+
|
73 |
+
if nb_predictions == 1:
|
74 |
+
axes = [axes]
|
75 |
+
|
76 |
+
for i, (mask, score) in enumerate(zip(masks, scores)):
|
77 |
+
print(i)
|
78 |
+
mask = mask.cpu().detach().numpy()
|
79 |
+
axes[i].imshow(np.array(raw_image))
|
80 |
+
show_mask(mask, axes[i])
|
81 |
+
axes[i].title.set_text(f"Mask {i+1}, Score: {score.item():.3f}")
|
82 |
+
axes[i].axis("off")
|
83 |
+
|
84 |
+
return fig_to_base64(fig)
|
85 |
+
|
86 |
+
def show_first_mask_on_image_base64(raw_image, masks, scores):
|
87 |
+
if masks.ndim == 4:
|
88 |
+
mask = masks[0, 0]
|
89 |
+
elif masks.ndim == 3:
|
90 |
+
mask = masks[0]
|
91 |
+
else:
|
92 |
+
mask = masks
|
93 |
+
|
94 |
+
if isinstance(mask, torch.Tensor):
|
95 |
+
mask = mask.cpu().detach().numpy()
|
96 |
+
|
97 |
+
score_text = ""
|
98 |
+
if scores is not None:
|
99 |
+
if isinstance(scores, torch.Tensor):
|
100 |
+
scores = scores.flatten()
|
101 |
+
score = scores[0].item()
|
102 |
+
else:
|
103 |
+
score = float(np.array(scores).flatten()[0])
|
104 |
+
score_text = f"Score: {score:.3f}"
|
105 |
+
|
106 |
+
fig, ax = plt.subplots(figsize=(5, 5))
|
107 |
+
ax.imshow(np.array(raw_image))
|
108 |
+
show_mask(mask, ax)
|
109 |
+
ax.set_title(score_text)
|
110 |
+
ax.axis("off")
|
111 |
+
|
112 |
+
return fig_to_base64(fig)
|
113 |
+
|
114 |
+
def show_all_annotations_on_image_base64(raw_image, masks=None, scores=None, boxes=None, input_points=None, input_labels=None, model_name=None):
|
115 |
+
fig, ax = plt.subplots(figsize=(10, 10))
|
116 |
+
ax.imshow(np.array(raw_image))
|
117 |
+
|
118 |
+
if masks is not None:
|
119 |
+
if masks.ndim == 4:
|
120 |
+
mask = masks[0, 0]
|
121 |
+
elif masks.ndim == 3:
|
122 |
+
mask = masks[0]
|
123 |
+
else:
|
124 |
+
mask = masks
|
125 |
+
if isinstance(mask, torch.Tensor):
|
126 |
+
mask = mask.cpu().detach().numpy()
|
127 |
+
show_mask(mask, ax)
|
128 |
+
|
129 |
+
if scores is not None:
|
130 |
+
if isinstance(scores, torch.Tensor):
|
131 |
+
scores = scores.flatten()
|
132 |
+
score = scores[0].item()
|
133 |
+
else:
|
134 |
+
score = float(np.array(scores).flatten()[0])
|
135 |
+
ax.set_title(f"{model_name} - Score: {score:.3f}")
|
136 |
+
|
137 |
+
|
138 |
+
if input_points is not None:
|
139 |
+
input_points = np.array(input_points)
|
140 |
+
labels = np.ones_like(input_points[:, 0]) if input_labels is None else np.array(input_labels)
|
141 |
+
show_points(input_points, labels, ax)
|
142 |
+
|
143 |
+
if boxes is not None:
|
144 |
+
for box in boxes:
|
145 |
+
show_box(box, ax)
|
146 |
+
|
147 |
+
ax.axis("off")
|
148 |
+
return fig_to_base64(fig)
|