Spaces:
Running
on
Zero
Running
on
Zero
feat: ✨ supervision from_vlm support added (#4)
Browse files- refactor: Clean up imports 🧹, improve code readability 📘, and add from_vlm feature from Supervision 🕵️♂️ for simplified bounding boxes and annotations 🖼️ (c03a662fce0311080d6ecaef3341d84b914e44af)
- fix: 🐞 re-add
@GPU
decorator to detection functions (de6ff1c222c2340bca1af52c9dcd8931ad211e2b)
Co-authored-by: Onuralp SEZER <[email protected]>
- app.py +174 -106
- requirements.txt +1 -1
app.py
CHANGED
@@ -1,20 +1,19 @@
|
|
1 |
-
import random
|
2 |
-
import requests
|
3 |
import json
|
4 |
-
import ast
|
5 |
import time
|
6 |
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
import numpy as np
|
9 |
-
import supervision as sv
|
10 |
-
from PIL import Image, ImageDraw, ImageFont
|
11 |
-
|
12 |
import gradio as gr
|
13 |
-
import
|
14 |
-
from
|
|
|
15 |
from qwen_vl_utils import process_vision_info
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
from spaces import GPU
|
17 |
-
|
18 |
|
19 |
# --- Config ---
|
20 |
model_qwen_id = "Qwen/Qwen2.5-VL-3B-Instruct"
|
@@ -27,24 +26,29 @@ model_moondream = AutoModelForCausalLM.from_pretrained(
|
|
27 |
model_moondream_id,
|
28 |
revision="2025-06-21",
|
29 |
trust_remote_code=True,
|
30 |
-
device_map={"": "cuda"}
|
31 |
)
|
32 |
|
|
|
33 |
def extract_model_short_name(model_id):
|
34 |
return model_id.split("/")[-1].replace("-", " ").replace("_", " ")
|
35 |
|
|
|
36 |
model_qwen_name = extract_model_short_name(model_qwen_id) # → "Qwen2.5 VL 3B Instruct"
|
37 |
model_moondream_name = extract_model_short_name(model_moondream_id) # → "moondream2"
|
38 |
|
39 |
|
40 |
min_pixels = 224 * 224
|
41 |
max_pixels = 1024 * 1024
|
42 |
-
processor_qwen = AutoProcessor.from_pretrained(
|
|
|
|
|
|
|
43 |
|
44 |
def create_annotated_image(image, json_data, height, width):
|
45 |
try:
|
46 |
-
|
47 |
-
bbox_data = json.loads(
|
48 |
except Exception:
|
49 |
return image
|
50 |
|
@@ -52,24 +56,11 @@ def create_annotated_image(image, json_data, height, width):
|
|
52 |
x_scale = original_width / width
|
53 |
y_scale = original_height / height
|
54 |
|
55 |
-
boxes = []
|
56 |
-
box_labels = []
|
57 |
points = []
|
58 |
point_labels = []
|
59 |
|
60 |
for item in bbox_data:
|
61 |
label = item.get("label", "")
|
62 |
-
if "bbox_2d" in item:
|
63 |
-
bbox = item["bbox_2d"]
|
64 |
-
scaled_bbox = [
|
65 |
-
int(bbox[0] * x_scale),
|
66 |
-
int(bbox[1] * y_scale),
|
67 |
-
int(bbox[2] * x_scale),
|
68 |
-
int(bbox[3] * y_scale)
|
69 |
-
]
|
70 |
-
boxes.append(scaled_bbox)
|
71 |
-
box_labels.append(label)
|
72 |
-
|
73 |
if "point_2d" in item:
|
74 |
x, y = item["point_2d"]
|
75 |
scaled_x = int(x * x_scale)
|
@@ -77,34 +68,34 @@ def create_annotated_image(image, json_data, height, width):
|
|
77 |
points.append([scaled_x, scaled_y])
|
78 |
point_labels.append(label)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
84 |
bounding_box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
85 |
label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
86 |
|
87 |
annotated_image = bounding_box_annotator.annotate(
|
88 |
-
scene=annotated_image,
|
89 |
-
detections=detections
|
90 |
)
|
91 |
annotated_image = label_annotator.annotate(
|
92 |
-
scene=annotated_image,
|
93 |
-
detections=detections,
|
94 |
-
labels=box_labels
|
95 |
)
|
96 |
|
97 |
if points:
|
98 |
points_array = np.array(points).reshape(1, -1, 2)
|
99 |
key_points = sv.KeyPoints(xy=points_array)
|
100 |
vertex_annotator = sv.VertexAnnotator(radius=5, color=sv.Color.BLUE)
|
101 |
-
#vertex_label_annotator = sv.VertexLabelAnnotator(text_scale=0.5, border_radius=2)
|
102 |
|
103 |
annotated_image = vertex_annotator.annotate(
|
104 |
-
scene=annotated_image,
|
105 |
-
key_points=key_points
|
106 |
)
|
107 |
-
|
108 |
# annotated_image = vertex_label_annotator.annotate(
|
109 |
# scene=annotated_image,
|
110 |
# key_points=key_points,
|
@@ -113,6 +104,7 @@ def create_annotated_image(image, json_data, height, width):
|
|
113 |
|
114 |
return Image.fromarray(annotated_image)
|
115 |
|
|
|
116 |
def create_annotated_image_normalized(image, json_data, label="object"):
|
117 |
if not isinstance(json_data, dict):
|
118 |
return image
|
@@ -127,54 +119,43 @@ def create_annotated_image_normalized(image, json_data, label="object"):
|
|
127 |
x = int(point["x"] * original_width)
|
128 |
y = int(point["y"] * original_height)
|
129 |
points.append([x, y])
|
130 |
-
|
131 |
if "reasoning" in json_data:
|
132 |
for grounding in json_data["reasoning"].get("grounding", []):
|
133 |
for x_norm, y_norm in grounding.get("points", []):
|
134 |
x = int(x_norm * original_width)
|
135 |
y = int(y_norm * original_height)
|
136 |
-
points.append([x,y])
|
137 |
|
138 |
if points:
|
139 |
points_array = np.array(points).reshape(1, -1, 2)
|
140 |
key_points = sv.KeyPoints(xy=points_array)
|
141 |
vertex_annotator = sv.VertexAnnotator(radius=5, color=sv.Color.RED)
|
142 |
-
annotated_image = vertex_annotator.annotate(
|
|
|
|
|
143 |
|
144 |
-
# Handle boxes for object detection
|
145 |
-
boxes = []
|
146 |
if "objects" in json_data:
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
y_max = int(item["y_max"] * original_height)
|
152 |
-
boxes.append([x_min, y_min, x_max, y_max])
|
153 |
-
|
154 |
-
if boxes:
|
155 |
-
detections = sv.Detections(xyxy=np.array(boxes))
|
156 |
bounding_box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
157 |
label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
158 |
-
|
159 |
labels = [label for _ in detections.xyxy]
|
160 |
|
161 |
annotated_image = bounding_box_annotator.annotate(
|
162 |
-
scene=annotated_image,
|
163 |
-
detections=detections
|
164 |
)
|
165 |
annotated_image = label_annotator.annotate(
|
166 |
-
scene=annotated_image,
|
167 |
-
detections=detections,
|
168 |
-
labels=labels
|
169 |
)
|
170 |
|
171 |
return Image.fromarray(annotated_image)
|
172 |
|
173 |
-
|
174 |
-
|
175 |
@GPU
|
176 |
def detect_qwen(image, prompt):
|
177 |
-
|
178 |
messages = [
|
179 |
{
|
180 |
"role": "user",
|
@@ -186,7 +167,9 @@ def detect_qwen(image, prompt):
|
|
186 |
]
|
187 |
|
188 |
t0 = time.perf_counter()
|
189 |
-
text = processor_qwen.apply_chat_template(
|
|
|
|
|
190 |
image_inputs, video_inputs = process_vision_info(messages)
|
191 |
inputs = processor_qwen(
|
192 |
text=[text],
|
@@ -198,17 +181,23 @@ def detect_qwen(image, prompt):
|
|
198 |
|
199 |
generated_ids = model_qwen.generate(**inputs, max_new_tokens=1024)
|
200 |
generated_ids_trimmed = [
|
201 |
-
out_ids[len(in_ids):]
|
|
|
202 |
]
|
203 |
output_text = processor_qwen.batch_decode(
|
204 |
-
generated_ids_trimmed,
|
|
|
|
|
|
|
205 |
)[0]
|
206 |
elapsed_ms = (time.perf_counter() - t0) * 1_000
|
207 |
|
208 |
-
input_height = inputs[
|
209 |
-
input_width = inputs[
|
210 |
|
211 |
-
annotated_image = create_annotated_image(
|
|
|
|
|
212 |
|
213 |
time_taken = f"**Inference time ({model_qwen_name}):** {elapsed_ms:.0f} ms"
|
214 |
return annotated_image, output_text, time_taken
|
@@ -222,22 +211,39 @@ def detect_moondream(image, prompt, category_input):
|
|
222 |
elif category_input == "Visual Grounding + Keypoint Detection":
|
223 |
output_text = model_moondream.point(image=image, object=prompt)
|
224 |
else:
|
225 |
-
output_text = model_moondream.query(
|
|
|
|
|
226 |
elapsed_ms = (time.perf_counter() - t0) * 1_000
|
227 |
|
228 |
-
annotated_image = create_annotated_image_normalized(
|
|
|
|
|
229 |
|
230 |
time_taken = f"**Inference time ({model_moondream_name}):** {elapsed_ms:.0f} ms"
|
231 |
return annotated_image, output_text, time_taken
|
232 |
|
|
|
233 |
def detect(image, prompt_model_1, prompt_model_2, category_input):
|
234 |
STANDARD_SIZE = (1024, 1024)
|
235 |
image.thumbnail(STANDARD_SIZE)
|
236 |
-
|
237 |
-
annotated_image_model_1, output_text_model_1, timing_1 = detect_qwen(image, prompt_model_1)
|
238 |
-
annotated_image_model_2, output_text_model_2, timing_2 = detect_moondream(image, prompt_model_2, category_input)
|
239 |
|
240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
css_hide_share = """
|
243 |
button#gradio-share-link-button-0 {
|
@@ -247,11 +253,12 @@ button#gradio-share-link-button-0 {
|
|
247 |
|
248 |
# --- Gradio Interface ---
|
249 |
with gr.Blocks(theme=Ocean(), css=css_hide_share) as demo:
|
250 |
-
|
251 |
gr.Markdown("# 👓 Object Understanding with Vision Language Models")
|
252 |
-
gr.Markdown(
|
|
|
|
|
253 |
gr.Markdown("""
|
254 |
-
*Powered by [Qwen2.5-VL 3B](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) and [Moondream 2B (revision="2025-06-21")](https://huggingface.co/vikhyatk/moondream2). Inspired by the tutorial [Object Detection and Visual Grounding with Qwen 2.5](https://pyimagesearch.com/2025/06/09/object-detection-and-visual-grounding-with-qwen-2-5/) on PyImageSearch.*
|
255 |
*Moondream 2B uses the [moondream.py API](https://huggingface.co/vikhyatk/moondream2/blob/main/moondream.py), selecting `detect` for categories with "Object Detection" `point` for the ones with "Keypoint Detection", and reasoning-based querying for all others.*
|
256 |
""")
|
257 |
|
@@ -260,66 +267,127 @@ with gr.Blocks(theme=Ocean(), css=css_hide_share) as demo:
|
|
260 |
image_input = gr.Image(label="Upload an image", type="pil", height=400)
|
261 |
prompt_input_model_1 = gr.Textbox(
|
262 |
label=f"Enter your prompt for {model_qwen_name}",
|
263 |
-
placeholder="e.g., Detect all red cars in the image"
|
264 |
)
|
265 |
|
266 |
prompt_input_model_2 = gr.Textbox(
|
267 |
label=f"Enter your prompt for {model_moondream_name}",
|
268 |
-
placeholder="e.g., Detect all blue cars in the image"
|
269 |
)
|
270 |
|
271 |
-
|
272 |
categories = [
|
273 |
"Object Detection",
|
274 |
"Object Counting",
|
275 |
"Visual Grounding + Keypoint Detection",
|
276 |
"Visual Grounding + Object Detection",
|
277 |
-
"General query"
|
278 |
]
|
279 |
|
280 |
category_input = gr.Dropdown(
|
281 |
-
choices=categories,
|
282 |
-
label="Category",
|
283 |
-
interactive=True
|
284 |
)
|
285 |
generate_btn = gr.Button(value="Generate")
|
286 |
|
287 |
with gr.Column(scale=1):
|
288 |
-
output_image_model_1 = gr.Image(
|
289 |
-
|
|
|
|
|
|
|
|
|
290 |
output_time_model_1 = gr.Markdown()
|
291 |
-
|
292 |
with gr.Column(scale=1):
|
293 |
-
output_image_model_2 = gr.Image(
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
output_time_model_2 = gr.Markdown()
|
296 |
|
297 |
gr.Markdown("### Examples")
|
298 |
example_prompts = [
|
299 |
-
[
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
[
|
306 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
]
|
308 |
|
309 |
gr.Examples(
|
310 |
examples=example_prompts,
|
311 |
-
inputs=[
|
312 |
-
|
|
|
|
|
|
|
|
|
|
|
313 |
)
|
314 |
|
315 |
generate_btn.click(
|
316 |
fn=detect,
|
317 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
318 |
outputs=[
|
319 |
-
output_image_model_1,
|
320 |
-
|
321 |
-
|
|
|
|
|
|
|
|
|
322 |
)
|
323 |
-
|
324 |
if __name__ == "__main__":
|
325 |
demo.launch()
|
|
|
|
|
|
|
1 |
import json
|
|
|
2 |
import time
|
3 |
|
|
|
|
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
from gradio.themes.ocean import Ocean
|
7 |
+
from PIL import Image
|
8 |
from qwen_vl_utils import process_vision_info
|
9 |
+
from transformers import (
|
10 |
+
AutoModelForCausalLM,
|
11 |
+
AutoProcessor,
|
12 |
+
Qwen2_5_VLForConditionalGeneration,
|
13 |
+
)
|
14 |
+
|
15 |
from spaces import GPU
|
16 |
+
import supervision as sv
|
17 |
|
18 |
# --- Config ---
|
19 |
model_qwen_id = "Qwen/Qwen2.5-VL-3B-Instruct"
|
|
|
26 |
model_moondream_id,
|
27 |
revision="2025-06-21",
|
28 |
trust_remote_code=True,
|
29 |
+
device_map={"": "cuda"},
|
30 |
)
|
31 |
|
32 |
+
|
33 |
def extract_model_short_name(model_id):
|
34 |
return model_id.split("/")[-1].replace("-", " ").replace("_", " ")
|
35 |
|
36 |
+
|
37 |
model_qwen_name = extract_model_short_name(model_qwen_id) # → "Qwen2.5 VL 3B Instruct"
|
38 |
model_moondream_name = extract_model_short_name(model_moondream_id) # → "moondream2"
|
39 |
|
40 |
|
41 |
min_pixels = 224 * 224
|
42 |
max_pixels = 1024 * 1024
|
43 |
+
processor_qwen = AutoProcessor.from_pretrained(
|
44 |
+
"Qwen/Qwen2.5-VL-3B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
|
45 |
+
)
|
46 |
+
|
47 |
|
48 |
def create_annotated_image(image, json_data, height, width):
|
49 |
try:
|
50 |
+
parsed_json_data = json_data.split("```json")[1].split("```")[0]
|
51 |
+
bbox_data = json.loads(parsed_json_data)
|
52 |
except Exception:
|
53 |
return image
|
54 |
|
|
|
56 |
x_scale = original_width / width
|
57 |
y_scale = original_height / height
|
58 |
|
|
|
|
|
59 |
points = []
|
60 |
point_labels = []
|
61 |
|
62 |
for item in bbox_data:
|
63 |
label = item.get("label", "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
if "point_2d" in item:
|
65 |
x, y = item["point_2d"]
|
66 |
scaled_x = int(x * x_scale)
|
|
|
68 |
points.append([scaled_x, scaled_y])
|
69 |
point_labels.append(label)
|
70 |
|
71 |
+
annotated_image = np.array(image.convert("RGB"))
|
72 |
+
|
73 |
+
detections = sv.Detections.from_vlm(vlm = sv.VLM.QWEN_2_5_VL,
|
74 |
+
result=json_data,
|
75 |
+
input_wh=(original_width,
|
76 |
+
original_height),
|
77 |
+
resolution_wh=(original_width,
|
78 |
+
original_height))
|
79 |
bounding_box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
80 |
label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
81 |
|
82 |
annotated_image = bounding_box_annotator.annotate(
|
83 |
+
scene=annotated_image, detections=detections
|
|
|
84 |
)
|
85 |
annotated_image = label_annotator.annotate(
|
86 |
+
scene=annotated_image, detections=detections
|
|
|
|
|
87 |
)
|
88 |
|
89 |
if points:
|
90 |
points_array = np.array(points).reshape(1, -1, 2)
|
91 |
key_points = sv.KeyPoints(xy=points_array)
|
92 |
vertex_annotator = sv.VertexAnnotator(radius=5, color=sv.Color.BLUE)
|
93 |
+
# vertex_label_annotator = sv.VertexLabelAnnotator(text_scale=0.5, border_radius=2)
|
94 |
|
95 |
annotated_image = vertex_annotator.annotate(
|
96 |
+
scene=annotated_image, key_points=key_points
|
|
|
97 |
)
|
98 |
+
|
99 |
# annotated_image = vertex_label_annotator.annotate(
|
100 |
# scene=annotated_image,
|
101 |
# key_points=key_points,
|
|
|
104 |
|
105 |
return Image.fromarray(annotated_image)
|
106 |
|
107 |
+
|
108 |
def create_annotated_image_normalized(image, json_data, label="object"):
|
109 |
if not isinstance(json_data, dict):
|
110 |
return image
|
|
|
119 |
x = int(point["x"] * original_width)
|
120 |
y = int(point["y"] * original_height)
|
121 |
points.append([x, y])
|
122 |
+
|
123 |
if "reasoning" in json_data:
|
124 |
for grounding in json_data["reasoning"].get("grounding", []):
|
125 |
for x_norm, y_norm in grounding.get("points", []):
|
126 |
x = int(x_norm * original_width)
|
127 |
y = int(y_norm * original_height)
|
128 |
+
points.append([x, y])
|
129 |
|
130 |
if points:
|
131 |
points_array = np.array(points).reshape(1, -1, 2)
|
132 |
key_points = sv.KeyPoints(xy=points_array)
|
133 |
vertex_annotator = sv.VertexAnnotator(radius=5, color=sv.Color.RED)
|
134 |
+
annotated_image = vertex_annotator.annotate(
|
135 |
+
scene=annotated_image, key_points=key_points
|
136 |
+
)
|
137 |
|
|
|
|
|
138 |
if "objects" in json_data:
|
139 |
+
detections = sv.Detections.from_vlm(sv.VLM.MOONDREAM,json_data,
|
140 |
+
resolution_wh=(original_width,
|
141 |
+
original_height))
|
142 |
+
|
|
|
|
|
|
|
|
|
|
|
143 |
bounding_box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
144 |
label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
145 |
+
|
146 |
labels = [label for _ in detections.xyxy]
|
147 |
|
148 |
annotated_image = bounding_box_annotator.annotate(
|
149 |
+
scene=annotated_image, detections=detections
|
|
|
150 |
)
|
151 |
annotated_image = label_annotator.annotate(
|
152 |
+
scene=annotated_image, detections=detections, labels=labels
|
|
|
|
|
153 |
)
|
154 |
|
155 |
return Image.fromarray(annotated_image)
|
156 |
|
|
|
|
|
157 |
@GPU
|
158 |
def detect_qwen(image, prompt):
|
|
|
159 |
messages = [
|
160 |
{
|
161 |
"role": "user",
|
|
|
167 |
]
|
168 |
|
169 |
t0 = time.perf_counter()
|
170 |
+
text = processor_qwen.apply_chat_template(
|
171 |
+
messages, tokenize=False, add_generation_prompt=True
|
172 |
+
)
|
173 |
image_inputs, video_inputs = process_vision_info(messages)
|
174 |
inputs = processor_qwen(
|
175 |
text=[text],
|
|
|
181 |
|
182 |
generated_ids = model_qwen.generate(**inputs, max_new_tokens=1024)
|
183 |
generated_ids_trimmed = [
|
184 |
+
out_ids[len(in_ids) :]
|
185 |
+
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
186 |
]
|
187 |
output_text = processor_qwen.batch_decode(
|
188 |
+
generated_ids_trimmed,
|
189 |
+
do_sample=True,
|
190 |
+
skip_special_tokens=True,
|
191 |
+
clean_up_tokenization_spaces=False,
|
192 |
)[0]
|
193 |
elapsed_ms = (time.perf_counter() - t0) * 1_000
|
194 |
|
195 |
+
input_height = inputs["image_grid_thw"][0][1] * 14
|
196 |
+
input_width = inputs["image_grid_thw"][0][2] * 14
|
197 |
|
198 |
+
annotated_image = create_annotated_image(
|
199 |
+
image, output_text, input_height, input_width
|
200 |
+
)
|
201 |
|
202 |
time_taken = f"**Inference time ({model_qwen_name}):** {elapsed_ms:.0f} ms"
|
203 |
return annotated_image, output_text, time_taken
|
|
|
211 |
elif category_input == "Visual Grounding + Keypoint Detection":
|
212 |
output_text = model_moondream.point(image=image, object=prompt)
|
213 |
else:
|
214 |
+
output_text = model_moondream.query(
|
215 |
+
image=image, question=prompt, reasoning=True
|
216 |
+
)
|
217 |
elapsed_ms = (time.perf_counter() - t0) * 1_000
|
218 |
|
219 |
+
annotated_image = create_annotated_image_normalized(
|
220 |
+
image=image, json_data=output_text, label="object"
|
221 |
+
)
|
222 |
|
223 |
time_taken = f"**Inference time ({model_moondream_name}):** {elapsed_ms:.0f} ms"
|
224 |
return annotated_image, output_text, time_taken
|
225 |
|
226 |
+
|
227 |
def detect(image, prompt_model_1, prompt_model_2, category_input):
|
228 |
STANDARD_SIZE = (1024, 1024)
|
229 |
image.thumbnail(STANDARD_SIZE)
|
|
|
|
|
|
|
230 |
|
231 |
+
annotated_image_model_1, output_text_model_1, timing_1 = detect_qwen(
|
232 |
+
image, prompt_model_1
|
233 |
+
)
|
234 |
+
annotated_image_model_2, output_text_model_2, timing_2 = detect_moondream(
|
235 |
+
image, prompt_model_2, category_input
|
236 |
+
)
|
237 |
+
|
238 |
+
return (
|
239 |
+
annotated_image_model_1,
|
240 |
+
output_text_model_1,
|
241 |
+
timing_1,
|
242 |
+
annotated_image_model_2,
|
243 |
+
output_text_model_2,
|
244 |
+
timing_2,
|
245 |
+
)
|
246 |
+
|
247 |
|
248 |
css_hide_share = """
|
249 |
button#gradio-share-link-button-0 {
|
|
|
253 |
|
254 |
# --- Gradio Interface ---
|
255 |
with gr.Blocks(theme=Ocean(), css=css_hide_share) as demo:
|
|
|
256 |
gr.Markdown("# 👓 Object Understanding with Vision Language Models")
|
257 |
+
gr.Markdown(
|
258 |
+
"### Explore object detection, visual grounding, keypoint detection, and/or object counting through natural language prompts."
|
259 |
+
)
|
260 |
gr.Markdown("""
|
261 |
+
*Powered by [Qwen2.5-VL 3B](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) and [Moondream 2B (revision="2025-06-21")](https://huggingface.co/vikhyatk/moondream2). Inspired by the tutorial [Object Detection and Visual Grounding with Qwen 2.5](https://pyimagesearch.com/2025/06/09/object-detection-and-visual-grounding-with-qwen-2-5/) on PyImageSearch.*
|
262 |
*Moondream 2B uses the [moondream.py API](https://huggingface.co/vikhyatk/moondream2/blob/main/moondream.py), selecting `detect` for categories with "Object Detection" `point` for the ones with "Keypoint Detection", and reasoning-based querying for all others.*
|
263 |
""")
|
264 |
|
|
|
267 |
image_input = gr.Image(label="Upload an image", type="pil", height=400)
|
268 |
prompt_input_model_1 = gr.Textbox(
|
269 |
label=f"Enter your prompt for {model_qwen_name}",
|
270 |
+
placeholder="e.g., Detect all red cars in the image",
|
271 |
)
|
272 |
|
273 |
prompt_input_model_2 = gr.Textbox(
|
274 |
label=f"Enter your prompt for {model_moondream_name}",
|
275 |
+
placeholder="e.g., Detect all blue cars in the image",
|
276 |
)
|
277 |
|
|
|
278 |
categories = [
|
279 |
"Object Detection",
|
280 |
"Object Counting",
|
281 |
"Visual Grounding + Keypoint Detection",
|
282 |
"Visual Grounding + Object Detection",
|
283 |
+
"General query",
|
284 |
]
|
285 |
|
286 |
category_input = gr.Dropdown(
|
287 |
+
choices=categories, label="Category", interactive=True
|
|
|
|
|
288 |
)
|
289 |
generate_btn = gr.Button(value="Generate")
|
290 |
|
291 |
with gr.Column(scale=1):
|
292 |
+
output_image_model_1 = gr.Image(
|
293 |
+
type="pil", label=f"Annotated image for {model_qwen_name}", height=400
|
294 |
+
)
|
295 |
+
output_textbox_model_1 = gr.Textbox(
|
296 |
+
label=f"Model response for {model_qwen_name}", lines=10
|
297 |
+
)
|
298 |
output_time_model_1 = gr.Markdown()
|
299 |
+
|
300 |
with gr.Column(scale=1):
|
301 |
+
output_image_model_2 = gr.Image(
|
302 |
+
type="pil",
|
303 |
+
label=f"Annotated image for {model_moondream_name}",
|
304 |
+
height=400,
|
305 |
+
)
|
306 |
+
output_textbox_model_2 = gr.Textbox(
|
307 |
+
label=f"Model response for {model_moondream_name}", lines=10
|
308 |
+
)
|
309 |
output_time_model_2 = gr.Markdown()
|
310 |
|
311 |
gr.Markdown("### Examples")
|
312 |
example_prompts = [
|
313 |
+
[
|
314 |
+
"examples/example_1.jpg",
|
315 |
+
"Detect all objects in the image and return their locations and labels.",
|
316 |
+
"objects",
|
317 |
+
"Object Detection",
|
318 |
+
],
|
319 |
+
[
|
320 |
+
"examples/example_2.JPG",
|
321 |
+
"Detect all the individual candies in the image and return their locations and labels.",
|
322 |
+
"candies",
|
323 |
+
"Object Detection",
|
324 |
+
],
|
325 |
+
[
|
326 |
+
"examples/example_1.jpg",
|
327 |
+
"Count the number of red cars in the image.",
|
328 |
+
"Count the number of red cars in the image.",
|
329 |
+
"Object Counting",
|
330 |
+
],
|
331 |
+
[
|
332 |
+
"examples/example_2.JPG",
|
333 |
+
"Count the number of blue candies in the image.",
|
334 |
+
"Count the number of blue candies in the image.",
|
335 |
+
"Object Counting",
|
336 |
+
],
|
337 |
+
[
|
338 |
+
"examples/example_1.jpg",
|
339 |
+
"Identify the red cars in this image, detect their key points and return their positions in the form of points.",
|
340 |
+
"red cars",
|
341 |
+
"Visual Grounding + Keypoint Detection",
|
342 |
+
],
|
343 |
+
[
|
344 |
+
"examples/example_2.JPG",
|
345 |
+
"Identify the blue candies in this image, detect their key points and return their positions in the form of points.",
|
346 |
+
"blue candies",
|
347 |
+
"Visual Grounding + Keypoint Detection",
|
348 |
+
],
|
349 |
+
[
|
350 |
+
"examples/example_1.jpg",
|
351 |
+
"Detect the red car that is leading in this image and return its location and label.",
|
352 |
+
"leading red car",
|
353 |
+
"Visual Grounding + Object Detection",
|
354 |
+
],
|
355 |
+
[
|
356 |
+
"examples/example_2.JPG",
|
357 |
+
"Detect the blue candy located at the top of the group in this image and return its location and label.",
|
358 |
+
"blue candy located at the top of the group",
|
359 |
+
"Visual Grounding + Object Detection",
|
360 |
+
],
|
361 |
]
|
362 |
|
363 |
gr.Examples(
|
364 |
examples=example_prompts,
|
365 |
+
inputs=[
|
366 |
+
image_input,
|
367 |
+
prompt_input_model_1,
|
368 |
+
prompt_input_model_2,
|
369 |
+
category_input,
|
370 |
+
],
|
371 |
+
label="Click an example to populate the input",
|
372 |
)
|
373 |
|
374 |
generate_btn.click(
|
375 |
fn=detect,
|
376 |
+
inputs=[
|
377 |
+
image_input,
|
378 |
+
prompt_input_model_1,
|
379 |
+
prompt_input_model_2,
|
380 |
+
category_input,
|
381 |
+
],
|
382 |
outputs=[
|
383 |
+
output_image_model_1,
|
384 |
+
output_textbox_model_1,
|
385 |
+
output_time_model_1,
|
386 |
+
output_image_model_2,
|
387 |
+
output_textbox_model_2,
|
388 |
+
output_time_model_2,
|
389 |
+
],
|
390 |
)
|
391 |
+
|
392 |
if __name__ == "__main__":
|
393 |
demo.launch()
|
requirements.txt
CHANGED
@@ -7,4 +7,4 @@ accelerate
|
|
7 |
qwen-vl-utils
|
8 |
torchvision
|
9 |
matplotlib
|
10 |
-
supervision
|
|
|
7 |
qwen-vl-utils
|
8 |
torchvision
|
9 |
matplotlib
|
10 |
+
supervision
|