Spaces:
Sleeping
Sleeping
File size: 10,942 Bytes
0c08550 6935641 0c08550 6935641 0c08550 6935641 0c08550 6935641 0c08550 6935641 18449fc 6935641 18449fc 6935641 fcf00e5 4d2f42d fcf00e5 6935641 4d2f42d 6935641 4d2f42d 6935641 4d2f42d 6935641 235bd9f 6935641 0c08550 6935641 0c08550 6935641 18449fc 0c08550 f1ea8a0 6935641 235bd9f 0c08550 6935641 235bd9f 18449fc 235bd9f 6935641 235bd9f f1ea8a0 6935641 235bd9f 18449fc 6935641 0c08550 6935641 fcf00e5 6935641 fcf00e5 6935641 fcf00e5 6935641 4d2f42d 0c08550 6935641 0c08550 6935641 11a5899 6935641 0c08550 6935641 fcf00e5 6935641 11a5899 6935641 0c08550 6935641 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import spaces
# --- Configuration ---
BASE_MODEL_ID = "Qwen/Qwen2.5-7B-Instruct"
FINETUNED_MODEL_ID = "serhany/cineguide-qwen2.5-7b-instruct-ft"
SYSTEM_PROMPT_CINEGUIDE = """You are CineGuide, a knowledgeable and friendly movie recommendation assistant. Your goal is to:
1. Provide personalized movie recommendations based on user preferences
2. Give brief, compelling rationales for why you recommend each movie
3. Ask thoughtful follow-up questions to better understand user tastes
4. Maintain an enthusiastic but not overwhelming tone about cinema
When recommending movies, always explain WHY the movie fits their preferences."""
SYSTEM_PROMPT_BASE = "You are a helpful AI assistant."
# --- Global Model Cache ---
_models_cache = {
"base": None,
"finetuned": None,
"tokenizer_base": None,
"tokenizer_ft": None,
}
def load_model_and_tokenizer(model_identifier: str, model_key: str, tokenizer_key: str):
"""Loads a model and tokenizer if not already in cache."""
if _models_cache[model_key] is not None and _models_cache[tokenizer_key] is not None:
print(f"Using cached {model_key} model and {tokenizer_key} tokenizer.")
return _models_cache[model_key], _models_cache[tokenizer_key]
print(f"Loading {model_key} model ({model_identifier})...")
try:
tokenizer = AutoTokenizer.from_pretrained(
model_identifier,
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
model_identifier,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
model.eval()
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
if hasattr(tokenizer, "pad_token_id") and tokenizer.pad_token_id is None and tokenizer.eos_token_id is not None:
tokenizer.pad_token_id = tokenizer.eos_token_id
_models_cache[model_key] = model
_models_cache[tokenizer_key] = tokenizer
print(f"β
Successfully loaded {model_key} model!")
return model, tokenizer
except Exception as e:
print(f"β ERROR loading {model_key} model ({model_identifier}): {e}")
# FALLBACK: Use base model if fine-tuned model fails
if model_key == "finetuned" and model_identifier != BASE_MODEL_ID:
print(f"π FALLBACK: Loading base model instead for fine-tuned model...")
try:
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL_ID,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
model.eval()
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
if hasattr(tokenizer, "pad_token_id") and tokenizer.pad_token_id is None and tokenizer.eos_token_id is not None:
tokenizer.pad_token_id = tokenizer.eos_token_id
_models_cache[model_key] = model
_models_cache[tokenizer_key] = tokenizer
print(f"β
FALLBACK successful! Using base model with CineGuide prompt.")
return model, tokenizer
except Exception as fallback_e:
print(f"β FALLBACK also failed: {fallback_e}")
_models_cache[model_key] = "error"
_models_cache[tokenizer_key] = "error"
raise
def convert_gradio_history_to_messages(history):
"""Convert Gradio ChatInterface history format to messages format."""
messages = []
for exchange in history:
if isinstance(exchange, (list, tuple)) and len(exchange) == 2:
user_msg, assistant_msg = exchange
if user_msg: # Only add if not empty
messages.append({"role": "user", "content": str(user_msg)})
if assistant_msg: # Only add if not empty
messages.append({"role": "assistant", "content": str(assistant_msg)})
return messages
@spaces.GPU
def generate_chat_response(message: str, history: list, model_type_to_load: str):
"""Generate response using specified model type."""
model, tokenizer = None, None
system_prompt = ""
if model_type_to_load == "base":
if _models_cache["base"] == "error" or _models_cache["tokenizer_base"] == "error":
yield f"Base model ({BASE_MODEL_ID}) failed to load previously."
return
model, tokenizer = load_model_and_tokenizer(BASE_MODEL_ID, "base", "tokenizer_base")
system_prompt = SYSTEM_PROMPT_BASE
elif model_type_to_load == "finetuned":
if not FINETUNED_MODEL_ID or not isinstance(FINETUNED_MODEL_ID, str):
print(f"CRITICAL ERROR: FINETUNED_MODEL_ID is invalid: {FINETUNED_MODEL_ID}")
yield "Error: Fine-tuned model ID is not configured correctly."
return
if _models_cache["finetuned"] == "error" or _models_cache["tokenizer_ft"] == "error":
yield f"Fine-tuned model ({FINETUNED_MODEL_ID}) failed to load previously."
return
model, tokenizer = load_model_and_tokenizer(FINETUNED_MODEL_ID, "finetuned", "tokenizer_ft")
system_prompt = SYSTEM_PROMPT_CINEGUIDE
else:
yield "Invalid model type."
return
if model is None or tokenizer is None:
yield f"Model or tokenizer for '{model_type_to_load}' is not available after attempting load."
return
# Prepare conversation
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
# Convert and add chat history
formatted_history = convert_gradio_history_to_messages(history)
conversation.extend(formatted_history)
conversation.append({"role": "user", "content": message})
try:
# Generate response
prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1800).to(model.device)
# Prepare EOS tokens
eos_tokens_ids = [tokenizer.eos_token_id]
im_end_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
if im_end_id != getattr(tokenizer, 'unk_token_id', None):
eos_tokens_ids.append(im_end_id)
eos_tokens_ids = list(set(eos_tokens_ids))
# Generate
with torch.no_grad():
generated_token_ids = model.generate(
**inputs,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.1,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=eos_tokens_ids
)
new_tokens = generated_token_ids[0, inputs['input_ids'].shape[1]:]
response_text = tokenizer.decode(new_tokens, skip_special_tokens=True).strip().replace("<|im_end|>", "").strip()
# Stream the response
full_response = ""
for char in response_text:
full_response += char
time.sleep(0.005)
yield full_response
except Exception as e:
print(f"Error during generation: {e}")
yield f"Error during text generation: {str(e)}"
def respond_base(message, history):
"""Handle base model response for Gradio ChatInterface."""
try:
response_gen = generate_chat_response(message, history, "base")
for response in response_gen:
yield response
except Exception as e:
print(f"Error in respond_base: {e}")
yield f"Error: {str(e)}"
def respond_ft(message, history):
"""Handle fine-tuned model response for Gradio ChatInterface."""
try:
response_gen = generate_chat_response(message, history, "finetuned")
for response in response_gen:
yield response
except Exception as e:
print(f"Error in respond_ft: {e}")
yield f"Error: {str(e)}"
# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft(), title="π¬ CineGuide Comparison") as demo:
gr.Markdown(
f"""
# π¬ CineGuide vs. Base Model Comparison
Compare your fine-tuned CineGuide movie recommender with the base {BASE_MODEL_ID.split('/')[-1]} model.
**Base Model:** `{BASE_MODEL_ID}` (Standard Assistant)
**Fine-tuned Model:** `{FINETUNED_MODEL_ID}` (CineGuide - Specialized for Movies)
Type your movie-related query below and see how fine-tuning improves movie recommendations!
β οΈ **Note:** Models are loaded on first use and may take 30-60 seconds initially.
π‘ **Fallback:** If fine-tuned model fails, will use base model with specialized prompting.
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(f"## π£οΈ Base Model")
gr.Markdown(f"*{BASE_MODEL_ID.split('/')[-1]}*")
chatbot_base = gr.ChatInterface(
respond_base,
textbox=gr.Textbox(placeholder="Ask about movies...", container=False, scale=7),
title="",
description="",
examples=[
"Hi! I'm looking for something funny to watch tonight.",
"I love dry, witty humor more than slapstick.",
"I'm really into complex sci-fi movies that make you think.",
"Can you recommend a good thriller?",
"What's a good romantic comedy from the 2000s?"
],
cache_examples=False
)
with gr.Column(scale=1):
gr.Markdown(f"## π¬ CineGuide (Fine-tuned)")
gr.Markdown(f"*Specialized movie recommendation model*")
chatbot_ft = gr.ChatInterface(
respond_ft,
textbox=gr.Textbox(placeholder="Ask CineGuide about movies...", container=False, scale=7),
title="",
description="",
examples=[
"Hi! I'm looking for something funny to watch tonight.",
"I love dry, witty humor more than slapstick.",
"I'm really into complex sci-fi movies that make you think.",
"Can you recommend a good thriller?",
"What's a good romantic comedy from the 2000s?"
],
cache_examples=False
)
if __name__ == "__main__":
demo.queue(max_size=20)
demo.launch() |