from fastapi import APIRouter from datetime import datetime from datasets import load_dataset from sklearn.metrics import accuracy_score import random import os import torch from torch.utils.data import DataLoader from Model_Loader import M5, load_model from .utils.evaluation import AudioEvaluationRequest from .utils.emissions import tracker, clean_emissions_data, get_space_info from dotenv import load_dotenv load_dotenv() router = APIRouter() DESCRIPTION = "Quantized M5" ROUTE = "/audio" @router.post(ROUTE, tags=["Audio Task"], description=DESCRIPTION) async def evaluate_audio(request: AudioEvaluationRequest): """ Evaluate audio classification for rainforest sound detection. Current Model: Random Baseline - Makes random predictions from the label space (0-1) - Used as a baseline for comparison """ # Get space info username, space_url = get_space_info() # Define the label mapping LABEL_MAPPING = { "chainsaw": 0, "environment": 1 } # Load and prepare the dataset # Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN")) # Split dataset train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) test_dataset = train_test["test"] # Start tracking emissions tracker.start() tracker.start_task("inference") #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE CODE HERE # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. #-------------------------------------------------------------------------------------------- # Make random predictions (placeholder for actual model inference) model_path = "quantized_teacher_m5_static.pth" model, device = load_model(model_path) def preprocess_audio(example, target_length=32000): """ Convert dataset into tensors: - Convert to tensor - Normalize waveform - Pad/truncate to `target_length` """ waveform = torch.tensor(example["audio"]["array"], dtype=torch.float32).unsqueeze(0) # Add batch dim # Normalize waveform waveform = (waveform - waveform.mean()) / (waveform.std() + 1e-6) # Pad or truncate to fixed length if waveform.shape[1] < target_length: pad = torch.zeros(1, target_length - waveform.shape[1]) waveform = torch.cat((waveform, pad), dim=1) # Pad else: waveform = waveform[:, :target_length] # Truncate label = torch.tensor(example["label"], dtype=torch.long) # Ensure int64 return {"waveform": waveform, "label": label} train_test = train_test.map(preprocess_audio, batched=True) test_dataset = train_test.map(preprocess_audio) train_loader = DataLoader(train_test, batch_size=32, shuffle=True) true_labels = train_dataset["label"] predictions = [] with torch.no_grad(): for waveforms, labels in train_loader: waveforms, labels = waveforms.to(device), labels.to(device) outputs = model(waveforms) predicted_label = torch.argmax(F.softmax(outputs, dim=1), dim=1) true_labels.extend(labels.cpu().numpy()) predicted_labels.extend(predicted_label.cpu().numpy()) #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE STOPS HERE #-------------------------------------------------------------------------------------------- # Stop tracking emissions emissions_data = tracker.stop_task() # Calculate accuracy accuracy = accuracy_score(true_labels, predictions) # Prepare results dictionary results = { "username": username, "space_url": space_url, "submission_timestamp": datetime.now().isoformat(), "model_description": DESCRIPTION, "accuracy": float(accuracy), "energy_consumed_wh": emissions_data.energy_consumed * 1000, "emissions_gco2eq": emissions_data.emissions * 1000, "emissions_data": clean_emissions_data(emissions_data), "api_route": ROUTE, "dataset_config": { "dataset_name": request.dataset_name, "test_size": request.test_size, "test_seed": request.test_seed } } return results