Spaces:
Sleeping
Sleeping
File size: 1,681 Bytes
b053f3d 0191339 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
@app.post("/analyze")
async def analyze(request: Request):
data = await request.json()
text = preprocess(data.get("text", ""))
if not text.strip():
return {"error": "Empty input"}
# Tokenize to check length without truncating
tokenized = tokenizer(text, return_tensors='pt', add_special_tokens=True)
num_tokens = tokenized.input_ids.shape[1]
if num_tokens <= 512:
# ✅ Use direct inference for short inputs
encoded_input = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
probs = softmax(scores)
result = [
{"label": config.id2label[i], "score": round(float(probs[i]), 4)}
for i in probs.argsort()[::-1]
]
return {"result": result}
else:
# ✅ Long input: Split into chunks of ~500 words
max_words = 500
words = text.split()
chunks = [" ".join(words[i:i + max_words]) for i in range(0, len(words), max_words)]
all_scores = []
for chunk in chunks:
encoded_input = tokenizer(chunk, return_tensors='pt', truncation=True, padding=True, max_length=512)
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
probs = softmax(scores)
all_scores.append(probs)
# Average softmax scores
avg_scores = np.mean(all_scores, axis=0)
result = [
{"label": config.id2label[i], "score": round(float(avg_scores[i]), 4)}
for i in avg_scores.argsort()[::-1]
]
return {"result": result}
|