File size: 1,332 Bytes
a2004de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from fastapi import FastAPI, Request
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
from scipy.special import softmax
import numpy as np
import uvicorn

app = FastAPI()

# Load model and tokenizer
MODEL = "cardiffnlp/twitter-roberta-base-sentiment-latest"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
config = AutoConfig.from_pretrained(MODEL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL)

# Preprocessing function
def preprocess(text):
    tokens = []
    for t in text.split():
        if t.startswith("@") and len(t) > 1:
            t = "@user"
        elif t.startswith("http"):
            t = "http"
        tokens.append(t)
    return " ".join(tokens)

# Inference route
@app.post("/analyze")
async def analyze(request: Request):
    data = await request.json()
    text = preprocess(data.get("text", ""))

    encoded_input = tokenizer(text, return_tensors='pt')
    output = model(**encoded_input)
    scores = output[0][0].detach().numpy()
    scores = softmax(scores)

    ranking = np.argsort(scores)[::-1]
    result = []
    for i in ranking:
        label = config.id2label[i]
        score = round(float(scores[i]), 4)
        result.append({"label": label, "score": score})

    return {"result": result}