Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -11,10 +11,12 @@ app = FastAPI()
|
|
11 |
|
12 |
MODEL = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
13 |
|
|
|
14 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
15 |
config = AutoConfig.from_pretrained(MODEL)
|
16 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
17 |
|
|
|
18 |
def preprocess(text):
|
19 |
tokens = []
|
20 |
for t in text.split():
|
@@ -28,14 +30,34 @@ def preprocess(text):
|
|
28 |
@app.post("/analyze")
|
29 |
async def analyze(request: Request):
|
30 |
data = await request.json()
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
output = model(**encoded_input)
|
34 |
scores = output[0][0].detach().numpy()
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
36 |
result = [
|
37 |
-
{"label": config.id2label[i], "score": round(float(
|
38 |
-
for i in
|
39 |
]
|
|
|
|
|
40 |
return {"result": result}
|
41 |
|
|
|
|
11 |
|
12 |
MODEL = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
13 |
|
14 |
+
# Load model and tokenizer
|
15 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
16 |
config = AutoConfig.from_pretrained(MODEL)
|
17 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
18 |
|
19 |
+
# Preprocessing step for Twitter-style input
|
20 |
def preprocess(text):
|
21 |
tokens = []
|
22 |
for t in text.split():
|
|
|
30 |
@app.post("/analyze")
|
31 |
async def analyze(request: Request):
|
32 |
data = await request.json()
|
33 |
+
raw_text = data.get("text", "")
|
34 |
+
|
35 |
+
# Logging for debugging
|
36 |
+
print(f"Raw input: {raw_text}")
|
37 |
+
|
38 |
+
if not raw_text.strip():
|
39 |
+
return {"error": "Empty input text."}
|
40 |
+
|
41 |
+
text = preprocess(raw_text)
|
42 |
+
print(f"Preprocessed: {text}")
|
43 |
+
|
44 |
+
encoded_input = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
45 |
+
print(f"Encoded input: {encoded_input.input_ids}")
|
46 |
+
|
47 |
output = model(**encoded_input)
|
48 |
scores = output[0][0].detach().numpy()
|
49 |
+
probs = softmax(scores)
|
50 |
+
|
51 |
+
# Logging output
|
52 |
+
print(f"Raw scores: {scores}")
|
53 |
+
print(f"Softmax probs: {probs}")
|
54 |
+
|
55 |
result = [
|
56 |
+
{"label": config.id2label[i], "score": round(float(probs[i]), 4)}
|
57 |
+
for i in probs.argsort()[::-1]
|
58 |
]
|
59 |
+
|
60 |
+
print(f"Result: {result}")
|
61 |
return {"result": result}
|
62 |
|
63 |
+
|