Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,3 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
@app.post("/analyze")
|
2 |
async def analyze(request: Request):
|
3 |
data = await request.json()
|
@@ -6,44 +33,27 @@ async def analyze(request: Request):
|
|
6 |
if not text.strip():
|
7 |
return {"error": "Empty input"}
|
8 |
|
9 |
-
#
|
10 |
tokenized = tokenizer(text, return_tensors='pt', add_special_tokens=True)
|
11 |
-
|
12 |
-
|
13 |
-
if num_tokens <= 512:
|
14 |
-
# ✅ Use direct inference for short inputs
|
15 |
encoded_input = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
16 |
output = model(**encoded_input)
|
17 |
-
|
18 |
-
probs = softmax(scores)
|
19 |
-
|
20 |
-
result = [
|
21 |
-
{"label": config.id2label[i], "score": round(float(probs[i]), 4)}
|
22 |
-
for i in probs.argsort()[::-1]
|
23 |
-
]
|
24 |
-
|
25 |
-
return {"result": result}
|
26 |
-
|
27 |
else:
|
28 |
-
# ✅ Long input: Split into chunks of ~500 words
|
29 |
max_words = 500
|
30 |
words = text.split()
|
31 |
chunks = [" ".join(words[i:i + max_words]) for i in range(0, len(words), max_words)]
|
32 |
-
|
33 |
-
all_scores = []
|
34 |
for chunk in chunks:
|
35 |
encoded_input = tokenizer(chunk, return_tensors='pt', truncation=True, padding=True, max_length=512)
|
36 |
output = model(**encoded_input)
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
# Average softmax scores
|
42 |
-
avg_scores = np.mean(all_scores, axis=0)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
48 |
|
49 |
-
return {"result": result}
|
|
|
1 |
+
import os
|
2 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache"
|
3 |
+
os.environ["HF_HOME"] = "/tmp/hf-home"
|
4 |
+
|
5 |
+
from fastapi import FastAPI, Request
|
6 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
|
7 |
+
from scipy.special import softmax
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
# ✅ Define app BEFORE any @app.route
|
11 |
+
app = FastAPI()
|
12 |
+
|
13 |
+
MODEL = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
15 |
+
config = AutoConfig.from_pretrained(MODEL)
|
16 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
17 |
+
|
18 |
+
def preprocess(text):
|
19 |
+
tokens = []
|
20 |
+
for t in text.split():
|
21 |
+
if t.startswith("@") and len(t) > 1:
|
22 |
+
t = "@user"
|
23 |
+
elif t.startswith("http"):
|
24 |
+
t = "http"
|
25 |
+
tokens.append(t)
|
26 |
+
return " ".join(tokens)
|
27 |
+
|
28 |
@app.post("/analyze")
|
29 |
async def analyze(request: Request):
|
30 |
data = await request.json()
|
|
|
33 |
if not text.strip():
|
34 |
return {"error": "Empty input"}
|
35 |
|
36 |
+
# Token length check
|
37 |
tokenized = tokenizer(text, return_tensors='pt', add_special_tokens=True)
|
38 |
+
if tokenized.input_ids.shape[1] <= 512:
|
|
|
|
|
|
|
39 |
encoded_input = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
40 |
output = model(**encoded_input)
|
41 |
+
probs = softmax(output[0][0].detach().numpy())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
else:
|
|
|
43 |
max_words = 500
|
44 |
words = text.split()
|
45 |
chunks = [" ".join(words[i:i + max_words]) for i in range(0, len(words), max_words)]
|
46 |
+
all_probs = []
|
|
|
47 |
for chunk in chunks:
|
48 |
encoded_input = tokenizer(chunk, return_tensors='pt', truncation=True, padding=True, max_length=512)
|
49 |
output = model(**encoded_input)
|
50 |
+
probs_chunk = softmax(output[0][0].detach().numpy())
|
51 |
+
all_probs.append(probs_chunk)
|
52 |
+
probs = np.mean(all_probs, axis=0)
|
|
|
|
|
|
|
53 |
|
54 |
+
result = [
|
55 |
+
{"label": config.id2label[i], "score": round(float(probs[i]), 4)}
|
56 |
+
for i in probs.argsort()[::-1]
|
57 |
+
]
|
58 |
+
return {"result": result}
|
59 |
|
|