|
import os |
|
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache" |
|
os.environ["HF_HOME"] = "/tmp/hf-home" |
|
|
|
from fastapi import FastAPI, Request |
|
from pydantic import BaseModel |
|
from transformers import pipeline |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
classifier = pipeline( |
|
"zero-shot-classification", |
|
model="MoritzLaurer/deberta-v3-large-zeroshot-v2.0" |
|
) |
|
|
|
|
|
|
|
class InputText(BaseModel): |
|
text: str |
|
|
|
@app.post("/classify") |
|
async def classify_text(data: InputText): |
|
candidate_labels = ["contains electronic components", "does not contain electronic components"] |
|
result = classifier(data.text, candidate_labels, multi_label=False) |
|
return { |
|
"input": data.text, |
|
"label": result["labels"][0], |
|
"score": result["scores"][0] |
|
} |