Spaces:
Runtime error
Runtime error
| import os | |
| import cv2 | |
| import numpy as np | |
| import psutil | |
| from roop.ProcessOptions import ProcessOptions | |
| from roop.face_util import get_first_face, get_all_faces, rotate_image_180 | |
| from roop.utilities import compute_cosine_distance, get_device, str_to_class | |
| from typing import Any, List, Callable | |
| from roop.typing import Frame | |
| from concurrent.futures import ThreadPoolExecutor, as_completed | |
| from threading import Thread, Lock | |
| from queue import Queue | |
| from tqdm import tqdm | |
| from roop.ffmpeg_writer import FFMPEG_VideoWriter | |
| import roop.globals | |
| def create_queue(temp_frame_paths: List[str]) -> Queue[str]: | |
| queue: Queue[str] = Queue() | |
| for frame_path in temp_frame_paths: | |
| queue.put(frame_path) | |
| return queue | |
| def pick_queue(queue: Queue[str], queue_per_future: int) -> List[str]: | |
| queues = [] | |
| for _ in range(queue_per_future): | |
| if not queue.empty(): | |
| queues.append(queue.get()) | |
| return queues | |
| class ProcessMgr(): | |
| input_face_datas = [] | |
| target_face_datas = [] | |
| processors = [] | |
| options : ProcessOptions = None | |
| num_threads = 1 | |
| current_index = 0 | |
| processing_threads = 1 | |
| buffer_wait_time = 0.1 | |
| lock = Lock() | |
| frames_queue = None | |
| processed_queue = None | |
| videowriter= None | |
| progress_gradio = None | |
| total_frames = 0 | |
| plugins = { | |
| 'faceswap' : 'FaceSwapInsightFace', | |
| 'mask_clip2seg' : 'Mask_Clip2Seg', | |
| 'codeformer' : 'Enhance_CodeFormer', | |
| 'gfpgan' : 'Enhance_GFPGAN', | |
| 'dmdnet' : 'Enhance_DMDNet', | |
| 'gpen' : 'Enhance_GPEN', | |
| } | |
| def __init__(self, progress): | |
| if progress is not None: | |
| self.progress_gradio = progress | |
| def initialize(self, input_faces, target_faces, options): | |
| self.input_face_datas = input_faces | |
| self.target_face_datas = target_faces | |
| self.options = options | |
| processornames = options.processors.split(",") | |
| devicename = get_device() | |
| if len(self.processors) < 1: | |
| for pn in processornames: | |
| classname = self.plugins[pn] | |
| module = 'roop.processors.' + classname | |
| p = str_to_class(module, classname) | |
| p.Initialize(devicename) | |
| self.processors.append(p) | |
| else: | |
| for i in range(len(self.processors) -1, -1, -1): | |
| if not self.processors[i].processorname in processornames: | |
| self.processors[i].Release() | |
| del self.processors[i] | |
| for i,pn in enumerate(processornames): | |
| if i >= len(self.processors) or self.processors[i].processorname != pn: | |
| p = None | |
| classname = self.plugins[pn] | |
| module = 'roop.processors.' + classname | |
| p = str_to_class(module, classname) | |
| p.Initialize(devicename) | |
| if p is not None: | |
| self.processors.insert(i, p) | |
| def run_batch(self, source_files, target_files, threads:int = 1): | |
| progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]' | |
| self.total_frames = len(source_files) | |
| self.num_threads = threads | |
| with tqdm(total=self.total_frames, desc='Processing', unit='frame', dynamic_ncols=True, bar_format=progress_bar_format) as progress: | |
| with ThreadPoolExecutor(max_workers=threads) as executor: | |
| futures = [] | |
| queue = create_queue(source_files) | |
| queue_per_future = max(len(source_files) // threads, 1) | |
| while not queue.empty(): | |
| future = executor.submit(self.process_frames, source_files, target_files, pick_queue(queue, queue_per_future), lambda: self.update_progress(progress)) | |
| futures.append(future) | |
| for future in as_completed(futures): | |
| future.result() | |
| def process_frames(self, source_files: List[str], target_files: List[str], current_files, update: Callable[[], None]) -> None: | |
| for f in current_files: | |
| if not roop.globals.processing: | |
| return | |
| temp_frame = cv2.imread(f) | |
| if temp_frame is not None: | |
| resimg = self.process_frame(temp_frame) | |
| if resimg is not None: | |
| i = source_files.index(f) | |
| cv2.imwrite(target_files[i], resimg) | |
| if update: | |
| update() | |
| def read_frames_thread(self, cap, frame_start, frame_end, num_threads): | |
| num_frame = 0 | |
| total_num = frame_end - frame_start | |
| if frame_start > 0: | |
| cap.set(cv2.CAP_PROP_POS_FRAMES,frame_start) | |
| while True and roop.globals.processing: | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| self.frames_queue[num_frame % num_threads].put(frame, block=True) | |
| num_frame += 1 | |
| if num_frame == total_num: | |
| break | |
| for i in range(num_threads): | |
| self.frames_queue[i].put(None) | |
| def process_videoframes(self, threadindex, progress) -> None: | |
| while True: | |
| frame = self.frames_queue[threadindex].get() | |
| if frame is None: | |
| self.processing_threads -= 1 | |
| self.processed_queue[threadindex].put((False, None)) | |
| return | |
| else: | |
| resimg = self.process_frame(frame) | |
| self.processed_queue[threadindex].put((True, resimg)) | |
| del frame | |
| progress() | |
| def write_frames_thread(self): | |
| nextindex = 0 | |
| num_producers = self.num_threads | |
| while True: | |
| process, frame = self.processed_queue[nextindex % self.num_threads].get() | |
| nextindex += 1 | |
| if frame is not None: | |
| self.videowriter.write_frame(frame) | |
| del frame | |
| elif process == False: | |
| num_producers -= 1 | |
| if num_producers < 1: | |
| return | |
| def run_batch_inmem(self, source_video, target_video, frame_start, frame_end, fps, threads:int = 1, skip_audio=False): | |
| cap = cv2.VideoCapture(source_video) | |
| # frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| frame_count = (frame_end - frame_start) + 1 | |
| width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
| height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
| self.total_frames = frame_count | |
| self.num_threads = threads | |
| self.processing_threads = self.num_threads | |
| self.frames_queue = [] | |
| self.processed_queue = [] | |
| for _ in range(threads): | |
| self.frames_queue.append(Queue(1)) | |
| self.processed_queue.append(Queue(1)) | |
| self.videowriter = FFMPEG_VideoWriter(target_video, (width, height), fps, codec=roop.globals.video_encoder, crf=roop.globals.video_quality, audiofile=None) | |
| readthread = Thread(target=self.read_frames_thread, args=(cap, frame_start, frame_end, threads)) | |
| readthread.start() | |
| writethread = Thread(target=self.write_frames_thread) | |
| writethread.start() | |
| progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]' | |
| with tqdm(total=self.total_frames, desc='Processing', unit='frames', dynamic_ncols=True, bar_format=progress_bar_format) as progress: | |
| with ThreadPoolExecutor(thread_name_prefix='swap_proc', max_workers=self.num_threads) as executor: | |
| futures = [] | |
| for threadindex in range(threads): | |
| future = executor.submit(self.process_videoframes, threadindex, lambda: self.update_progress(progress)) | |
| futures.append(future) | |
| for future in as_completed(futures): | |
| future.result() | |
| # wait for the task to complete | |
| readthread.join() | |
| writethread.join() | |
| cap.release() | |
| self.videowriter.close() | |
| self.frames_queue.clear() | |
| self.processed_queue.clear() | |
| def update_progress(self, progress: Any = None) -> None: | |
| process = psutil.Process(os.getpid()) | |
| memory_usage = process.memory_info().rss / 1024 / 1024 / 1024 | |
| msg = 'memory_usage: ' + '{:.2f}'.format(memory_usage).zfill(5) + f' GB execution_threads {self.num_threads}' | |
| progress.set_postfix({ | |
| 'memory_usage': '{:.2f}'.format(memory_usage).zfill(5) + 'GB', | |
| 'execution_threads': self.num_threads | |
| }) | |
| progress.update(1) | |
| self.progress_gradio((progress.n, self.total_frames), desc='Processing', total=self.total_frames, unit='frames') | |
| def on_no_face_action(self, frame:Frame): | |
| if roop.globals.no_face_action == 0: | |
| return None, frame | |
| elif roop.globals.no_face_action == 2: | |
| return None, None | |
| faces = get_all_faces(frame) | |
| if faces is not None: | |
| return faces, frame | |
| return None, frame | |
| def process_frame(self, frame:Frame): | |
| if len(self.input_face_datas) < 1: | |
| return frame | |
| temp_frame = frame.copy() | |
| num_swapped, temp_frame = self.swap_faces(frame, temp_frame) | |
| if num_swapped > 0: | |
| return temp_frame | |
| if roop.globals.no_face_action == 0: | |
| return frame | |
| if roop.globals.no_face_action == 2: | |
| return None | |
| else: | |
| copyframe = frame.copy() | |
| copyframe = rotate_image_180(copyframe) | |
| temp_frame = copyframe.copy() | |
| num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame) | |
| if num_swapped == 0: | |
| return frame | |
| temp_frame = rotate_image_180(temp_frame) | |
| return temp_frame | |
| def swap_faces(self, frame, temp_frame): | |
| num_faces_found = 0 | |
| if self.options.swap_mode == "first": | |
| face = get_first_face(frame) | |
| if face is None: | |
| return num_faces_found, frame | |
| num_faces_found += 1 | |
| temp_frame = self.process_face(self.options.selected_index, face, temp_frame) | |
| else: | |
| faces = get_all_faces(frame) | |
| if faces is None: | |
| return num_faces_found, frame | |
| if self.options.swap_mode == "all": | |
| for face in faces: | |
| num_faces_found += 1 | |
| temp_frame = self.process_face(self.options.selected_index, face, temp_frame) | |
| del face | |
| elif self.options.swap_mode == "selected": | |
| for i,tf in enumerate(self.target_face_datas): | |
| for face in faces: | |
| if compute_cosine_distance(tf.embedding, face.embedding) <= self.options.face_distance_threshold: | |
| if i < len(self.input_face_datas): | |
| temp_frame = self.process_face(i, face, temp_frame) | |
| num_faces_found += 1 | |
| break | |
| del face | |
| elif self.options.swap_mode == "all_female" or self.options.swap_mode == "all_male": | |
| gender = 'F' if self.options.swap_mode == "all_female" else 'M' | |
| for face in faces: | |
| if face.sex == gender: | |
| num_faces_found += 1 | |
| temp_frame = self.process_face(self.options.selected_index, face, temp_frame) | |
| del face | |
| if num_faces_found == 0: | |
| return num_faces_found, frame | |
| maskprocessor = next((x for x in self.processors if x.processorname == 'clip2seg'), None) | |
| if maskprocessor is not None: | |
| temp_frame = self.process_mask(maskprocessor, frame, temp_frame) | |
| return num_faces_found, temp_frame | |
| def process_face(self,face_index, target_face, frame:Frame): | |
| enhanced_frame = None | |
| inputface = self.input_face_datas[face_index].faces[0] | |
| for p in self.processors: | |
| if p.type == 'swap': | |
| fake_frame = p.Run(inputface, target_face, frame) | |
| scale_factor = 0.0 | |
| elif p.type == 'mask': | |
| continue | |
| else: | |
| enhanced_frame, scale_factor = p.Run(self.input_face_datas[face_index], target_face, fake_frame) | |
| upscale = 512 | |
| orig_width = fake_frame.shape[1] | |
| fake_frame = cv2.resize(fake_frame, (upscale, upscale), cv2.INTER_CUBIC) | |
| mask_offsets = inputface.mask_offsets | |
| if enhanced_frame is None: | |
| scale_factor = int(upscale / orig_width) | |
| result = self.paste_upscale(fake_frame, fake_frame, target_face.matrix, frame, scale_factor, mask_offsets) | |
| else: | |
| result = self.paste_upscale(fake_frame, enhanced_frame, target_face.matrix, frame, scale_factor, mask_offsets) | |
| return result | |
| def cutout(self, frame:Frame, start_x, start_y, end_x, end_y): | |
| if start_x < 0: | |
| start_x = 0 | |
| if start_y < 0: | |
| start_y = 0 | |
| if end_x > frame.shape[1]: | |
| end_x = frame.shape[1] | |
| if end_y > frame.shape[0]: | |
| end_y = frame.shape[0] | |
| return frame[start_y:end_y, start_x:end_x], start_x, start_y, end_x, end_y | |
| # Paste back adapted from here | |
| # https://github.com/fAIseh00d/refacer/blob/main/refacer.py | |
| # which is revised insightface paste back code | |
| def paste_upscale(self, fake_face, upsk_face, M, target_img, scale_factor, mask_offsets): | |
| M_scale = M * scale_factor | |
| IM = cv2.invertAffineTransform(M_scale) | |
| face_matte = np.full((target_img.shape[0],target_img.shape[1]), 255, dtype=np.uint8) | |
| ##Generate white square sized as a upsk_face | |
| img_matte = np.full((upsk_face.shape[0],upsk_face.shape[1]), 255, dtype=np.uint8) | |
| if mask_offsets[0] > 0: | |
| img_matte[:mask_offsets[0],:] = 0 | |
| if mask_offsets[1] > 0: | |
| img_matte[-mask_offsets[1]:,:] = 0 | |
| ##Transform white square back to target_img | |
| img_matte = cv2.warpAffine(img_matte, IM, (target_img.shape[1], target_img.shape[0]), flags=cv2.INTER_NEAREST, borderValue=0.0) | |
| ##Blacken the edges of face_matte by 1 pixels (so the mask in not expanded on the image edges) | |
| img_matte[:1,:] = img_matte[-1:,:] = img_matte[:,:1] = img_matte[:,-1:] = 0 | |
| #Detect the affine transformed white area | |
| mask_h_inds, mask_w_inds = np.where(img_matte==255) | |
| #Calculate the size (and diagonal size) of transformed white area width and height boundaries | |
| mask_h = np.max(mask_h_inds) - np.min(mask_h_inds) | |
| mask_w = np.max(mask_w_inds) - np.min(mask_w_inds) | |
| mask_size = int(np.sqrt(mask_h*mask_w)) | |
| #Calculate the kernel size for eroding img_matte by kernel (insightface empirical guess for best size was max(mask_size//10,10)) | |
| # k = max(mask_size//12, 8) | |
| k = max(mask_size//10, 10) | |
| kernel = np.ones((k,k),np.uint8) | |
| img_matte = cv2.erode(img_matte,kernel,iterations = 1) | |
| #Calculate the kernel size for blurring img_matte by blur_size (insightface empirical guess for best size was max(mask_size//20, 5)) | |
| # k = max(mask_size//24, 4) | |
| k = max(mask_size//20, 5) | |
| kernel_size = (k, k) | |
| blur_size = tuple(2*i+1 for i in kernel_size) | |
| img_matte = cv2.GaussianBlur(img_matte, blur_size, 0) | |
| #Normalize images to float values and reshape | |
| img_matte = img_matte.astype(np.float32)/255 | |
| face_matte = face_matte.astype(np.float32)/255 | |
| img_matte = np.minimum(face_matte, img_matte) | |
| img_matte = np.reshape(img_matte, [img_matte.shape[0],img_matte.shape[1],1]) | |
| ##Transform upcaled face back to target_img | |
| paste_face = cv2.warpAffine(upsk_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE) | |
| if upsk_face is not fake_face: | |
| fake_face = cv2.warpAffine(fake_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE) | |
| paste_face = cv2.addWeighted(paste_face, self.options.blend_ratio, fake_face, 1.0 - self.options.blend_ratio, 0) | |
| ##Re-assemble image | |
| paste_face = img_matte * paste_face | |
| paste_face = paste_face + (1-img_matte) * target_img.astype(np.float32) | |
| del img_matte | |
| del face_matte | |
| del upsk_face | |
| del fake_face | |
| return paste_face.astype(np.uint8) | |
| def process_mask(self, processor, frame:Frame, target:Frame): | |
| img_mask = processor.Run(frame, self.options.masking_text) | |
| img_mask = cv2.resize(img_mask, (target.shape[1], target.shape[0])) | |
| img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1]) | |
| target = target.astype(np.float32) | |
| result = (1-img_mask) * target | |
| result += img_mask * frame.astype(np.float32) | |
| return np.uint8(result) | |
| def unload_models(): | |
| pass | |
| def release_resources(self): | |
| for p in self.processors: | |
| p.Release() | |
| self.processors.clear() | |