Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import gradio as gr | |
| import numpy as np | |
| from transformers import T5Tokenizer, T5EncoderModel | |
| import esm | |
| from inference import load_models, predict_ensemble | |
| # Load trained models | |
| model_protT5, model_cat = load_models() | |
| # Load ProtT5 model | |
| tokenizer_t5 = T5Tokenizer.from_pretrained("Rostlab/prot_t5_xl_uniref50", do_lower_case=False) | |
| model_t5 = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_uniref50") | |
| model_t5 = model_t5.eval() | |
| # Load ESM model | |
| esm_model, alphabet = esm.pretrained.esm2_t33_650M_UR50D() | |
| batch_converter = alphabet.get_batch_converter() | |
| esm_model.eval() | |
| def extract_prott5_embedding(sequence): | |
| sequence = sequence.replace(" ", "") | |
| seq = " ".join(list(sequence)) | |
| ids = tokenizer_t5(seq, return_tensors="pt", padding=True) | |
| with torch.no_grad(): | |
| embedding = model_t5(**ids).last_hidden_state | |
| return torch.mean(embedding, dim=1) | |
| def extract_esm_embedding(sequence): | |
| batch_labels, batch_strs, batch_tokens = batch_converter([("protein1", sequence)]) | |
| with torch.no_grad(): | |
| results = esm_model(batch_tokens, repr_layers=[33], return_contacts=False) | |
| token_representations = results["representations"][33] | |
| return torch.mean(token_representations[0, 1:len(sequence)+1], dim=0).unsqueeze(0) | |
| def classify(sequence): | |
| protT5_emb = extract_prott5_embedding(sequence) | |
| esm_emb = extract_esm_embedding(sequence) | |
| concat = torch.cat((esm_emb, protT5_emb), dim=1) | |
| pred = predict_ensemble(protT5_emb, concat, model_protT5, model_cat) | |
| return "Allergen" if pred.item() == 1 else "Non-Allergen" | |
| demo = gr.Interface(fn=classify, | |
| inputs=gr.Textbox(lines=3, placeholder="Enter protein sequence..."), | |
| outputs=gr.Label(label="Prediction")) | |
| if __name__ == "__main__": | |
| demo.launch() | |