shaghayeghhp commited on
Commit
a7b1603
·
verified ·
1 Parent(s): dcb1734

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -124
app.py CHANGED
@@ -1,180 +1,128 @@
1
  import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
6
  from transformers import pipeline
 
7
 
8
- # (Keep Constants as is)
9
  # --- Constants ---
10
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
11
 
12
- # --- Basic Agent Definition ---
13
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
14
- #class BasicAgent:
15
- #def __init__(self):
16
- #print("BasicAgent initialized.")
17
- #def __call__(self, question: str) -> str:
18
- #print(f"Agent received question (first 50 chars): {question[:50]}...")
19
- #fixed_answer = "This is a default answer."
20
- #print(f"Agent returning fixed answer: {fixed_answer}")
21
- #return fixed_answer
22
-
23
  class BasicAgent:
24
  def __init__(self):
25
- self.qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
26
-
 
 
27
  def __call__(self, question: str) -> str:
28
- # Provide dummy context if you don’t have one (not ideal but may work for basic testing)
29
- context = "Your context goes here. You might pull this from files or a knowledge base."
30
- result = self.qa_pipeline(question=question, context=context)
31
- return result["answer"]
32
-
33
- def run_and_submit_all( profile: gr.OAuthProfile | None):
34
- """
35
- Fetches all questions, runs the BasicAgent on them, submits all answers,
36
- and displays the results.
37
- """
38
- # --- Determine HF Space Runtime URL and Repo URL ---
39
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
40
-
41
- if profile:
42
- username= f"{profile.username}"
43
- print(f"User logged in: {username}")
44
- else:
45
  print("User not logged in.")
46
- return "Please Login to Hugging Face with the button.", None
 
 
 
 
 
 
47
 
48
  api_url = DEFAULT_API_URL
49
  questions_url = f"{api_url}/questions"
50
  submit_url = f"{api_url}/submit"
51
 
52
- # 1. Instantiate Agent ( modify this part to create your agent)
53
  try:
54
  agent = BasicAgent()
55
  except Exception as e:
56
- print(f"Error instantiating agent: {e}")
57
  return f"Error initializing agent: {e}", None
58
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
59
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
60
- print(agent_code)
61
 
62
- # 2. Fetch Questions
63
  print(f"Fetching questions from: {questions_url}")
64
  try:
65
  response = requests.get(questions_url, timeout=15)
66
  response.raise_for_status()
67
  questions_data = response.json()
68
  if not questions_data:
69
- print("Fetched questions list is empty.")
70
- return "Fetched questions list is empty or invalid format.", None
71
- print(f"Fetched {len(questions_data)} questions.")
72
- except requests.exceptions.RequestException as e:
73
- print(f"Error fetching questions: {e}")
74
- return f"Error fetching questions: {e}", None
75
- except requests.exceptions.JSONDecodeError as e:
76
- print(f"Error decoding JSON response from questions endpoint: {e}")
77
- print(f"Response text: {response.text[:500]}")
78
- return f"Error decoding server response for questions: {e}", None
79
  except Exception as e:
80
- print(f"An unexpected error occurred fetching questions: {e}")
81
- return f"An unexpected error occurred fetching questions: {e}", None
82
 
83
- # 3. Run your Agent
84
  results_log = []
85
  answers_payload = []
 
86
  print(f"Running agent on {len(questions_data)} questions...")
87
  for item in questions_data:
88
  task_id = item.get("task_id")
89
  question_text = item.get("question")
90
- if not task_id or question_text is None:
91
- print(f"Skipping item with missing task_id or question: {item}")
92
  continue
93
  try:
94
- submitted_answer = agent(question_text)
95
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
96
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
97
  except Exception as e:
98
- print(f"Error running agent on task {task_id}: {e}")
99
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
100
 
101
  if not answers_payload:
102
- print("Agent did not produce any answers to submit.")
103
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
104
 
105
- # 4. Prepare Submission
106
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
107
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
108
- print(status_update)
 
109
 
110
- # 5. Submit
111
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
112
  try:
113
  response = requests.post(submit_url, json=submission_data, timeout=60)
114
  response.raise_for_status()
115
  result_data = response.json()
116
  final_status = (
117
- f"Submission Successful!\n"
118
  f"User: {result_data.get('username')}\n"
119
- f"Overall Score: {result_data.get('score', 'N/A')}% "
120
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
121
- f"Message: {result_data.get('message', 'No message received.')}"
122
  )
123
- print("Submission successful.")
124
- results_df = pd.DataFrame(results_log)
125
- return final_status, results_df
126
- except requests.exceptions.HTTPError as e:
127
- error_detail = f"Server responded with status {e.response.status_code}."
128
- try:
129
- error_json = e.response.json()
130
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
131
- except requests.exceptions.JSONDecodeError:
132
- error_detail += f" Response: {e.response.text[:500]}"
133
- status_message = f"Submission Failed: {error_detail}"
134
- print(status_message)
135
- results_df = pd.DataFrame(results_log)
136
- return status_message, results_df
137
- except requests.exceptions.Timeout:
138
- status_message = "Submission Failed: The request timed out."
139
- print(status_message)
140
- results_df = pd.DataFrame(results_log)
141
- return status_message, results_df
142
- except requests.exceptions.RequestException as e:
143
- status_message = f"Submission Failed: Network error - {e}"
144
- print(status_message)
145
- results_df = pd.DataFrame(results_log)
146
- return status_message, results_df
147
  except Exception as e:
148
- status_message = f"An unexpected error occurred during submission: {e}"
149
- print(status_message)
150
- results_df = pd.DataFrame(results_log)
151
- return status_message, results_df
152
-
153
 
154
- # --- Build Gradio Interface using Blocks ---
155
  with gr.Blocks() as demo:
156
- gr.Markdown("# Basic Agent Evaluation Runner")
 
157
  gr.Markdown(
158
  """
159
  **Instructions:**
160
 
161
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
162
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
163
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
164
 
165
  ---
166
- **Disclaimers:**
167
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
168
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
169
  """
170
  )
171
 
172
  gr.LoginButton()
173
-
174
  run_button = gr.Button("Run Evaluation & Submit All Answers")
175
 
176
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
177
- # Removed max_rows=10 from DataFrame constructor
178
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
179
 
180
  run_button.click(
@@ -182,26 +130,24 @@ with gr.Blocks() as demo:
182
  outputs=[status_output, results_table]
183
  )
184
 
 
185
  if __name__ == "__main__":
186
  print("\n" + "-"*30 + " App Starting " + "-"*30)
187
- # Check for SPACE_HOST and SPACE_ID at startup for information
188
  space_host_startup = os.getenv("SPACE_HOST")
189
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
190
 
191
  if space_host_startup:
192
- print(f"✅ SPACE_HOST found: {space_host_startup}")
193
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
194
  else:
195
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
196
 
197
- if space_id_startup: # Print repo URLs if SPACE_ID is found
198
- print(f"✅ SPACE_ID found: {space_id_startup}")
199
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
200
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
201
  else:
202
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
203
-
204
- print("-"*(60 + len(" App Starting ")) + "\n")
205
 
206
- print("Launching Gradio Interface for Basic Agent Evaluation...")
207
- demo.launch(debug=True, share=False)
 
 
1
  import os
2
  import gradio as gr
3
  import requests
 
4
  import pandas as pd
5
  from transformers import pipeline
6
+ from typing import Optional
7
 
 
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
+ # --- Smart Agent Definition ---
12
+ from transformers import pipeline
13
+
 
 
 
 
 
 
 
 
14
  class BasicAgent:
15
  def __init__(self):
16
+ print("Loading advanced model pipeline...")
17
+ # You can swap this with another model if you want (like mistralai/Mistral-7B-Instruct-v0.2 if you use HF Inference API)
18
+ self.generator = pipeline("text2text-generation", model="google/flan-t5-large")
19
+
20
  def __call__(self, question: str) -> str:
21
+ try:
22
+ prompt = f"Answer the following question clearly and concisely:\n{question.strip()}"
23
+ response = self.generator(prompt, max_new_tokens=128, do_sample=False, temperature=0.0)
24
+ answer = response[0]["generated_text"].strip()
25
+ return answer
26
+ except Exception as e:
27
+ print(f"Agent failed to answer question: {e}")
28
+ return "ERROR"
29
+
30
+
31
+ # --- Submission Logic ---
32
+ def run_and_submit_all(profile: Optional[gr.OAuthProfile]):
33
+ space_id = os.getenv("SPACE_ID")
34
+ if not profile:
 
 
 
35
  print("User not logged in.")
36
+ return "Please login to Hugging Face with the button.", None
37
+
38
+ username = profile.username.strip()
39
+ print(f"User logged in: {username}")
40
+
41
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
42
+ print(f"Agent code link: {agent_code}")
43
 
44
  api_url = DEFAULT_API_URL
45
  questions_url = f"{api_url}/questions"
46
  submit_url = f"{api_url}/submit"
47
 
 
48
  try:
49
  agent = BasicAgent()
50
  except Exception as e:
 
51
  return f"Error initializing agent: {e}", None
 
 
 
52
 
 
53
  print(f"Fetching questions from: {questions_url}")
54
  try:
55
  response = requests.get(questions_url, timeout=15)
56
  response.raise_for_status()
57
  questions_data = response.json()
58
  if not questions_data:
59
+ return "Fetched questions list is empty.", None
 
 
 
 
 
 
 
 
 
60
  except Exception as e:
61
+ return f"Error fetching questions: {e}", None
 
62
 
 
63
  results_log = []
64
  answers_payload = []
65
+
66
  print(f"Running agent on {len(questions_data)} questions...")
67
  for item in questions_data:
68
  task_id = item.get("task_id")
69
  question_text = item.get("question")
70
+ if not task_id or not question_text:
 
71
  continue
72
  try:
73
+ answer = agent(question_text)
74
+ answers_payload.append({"task_id": task_id, "submitted_answer": answer})
75
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": answer})
76
  except Exception as e:
77
+ error_msg = f"AGENT ERROR: {e}"
78
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": error_msg})
79
 
80
  if not answers_payload:
81
+ return "No answers generated for submission.", pd.DataFrame(results_log)
 
82
 
83
+ submission_data = {
84
+ "username": username,
85
+ "agent_code": agent_code,
86
+ "answers": answers_payload
87
+ }
88
 
89
+ print(f"Submitting {len(answers_payload)} answers...")
 
90
  try:
91
  response = requests.post(submit_url, json=submission_data, timeout=60)
92
  response.raise_for_status()
93
  result_data = response.json()
94
  final_status = (
95
+ f"Submission Successful!\n"
96
  f"User: {result_data.get('username')}\n"
97
+ f"Score: {result_data.get('score', 'N/A')}% "
98
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')})\n"
99
+ f"Message: {result_data.get('message', 'No message')}"
100
  )
101
+ return final_status, pd.DataFrame(results_log)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
  except Exception as e:
103
+ return f" Submission failed: {e}", pd.DataFrame(results_log)
 
 
 
 
104
 
105
+ # --- Gradio Interface ---
106
  with gr.Blocks() as demo:
107
+ gr.Markdown("# 🤖 Basic Agent Evaluation Runner")
108
+
109
  gr.Markdown(
110
  """
111
  **Instructions:**
112
 
113
+ 1. Clone this space and implement your agent logic.
114
+ 2. Log in with your Hugging Face account using the button below.
115
+ 3. Click **Run Evaluation & Submit All Answers** to test and submit your agent.
116
 
117
  ---
118
+ ⚠️ Note: The first run may take time depending on model and question count.
 
 
119
  """
120
  )
121
 
122
  gr.LoginButton()
 
123
  run_button = gr.Button("Run Evaluation & Submit All Answers")
124
 
125
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
126
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
127
 
128
  run_button.click(
 
130
  outputs=[status_output, results_table]
131
  )
132
 
133
+ # --- Run App ---
134
  if __name__ == "__main__":
135
  print("\n" + "-"*30 + " App Starting " + "-"*30)
 
136
  space_host_startup = os.getenv("SPACE_HOST")
137
+ space_id_startup = os.getenv("SPACE_ID")
138
 
139
  if space_host_startup:
140
+ print(f"✅ SPACE_HOST: {space_host_startup}")
141
+ print(f"Runtime URL: https://{space_host_startup}.hf.space")
142
  else:
143
+ print("ℹ️ SPACE_HOST not set.")
144
 
145
+ if space_id_startup:
146
+ print(f"✅ SPACE_ID: {space_id_startup}")
147
+ print(f"Repo: https://huggingface.co/spaces/{space_id_startup}")
 
148
  else:
149
+ print("ℹ️ SPACE_ID not set.")
 
 
150
 
151
+ print("-" * 80)
152
+ print("Launching Gradio App...")
153
+ demo.launch(debug=True, share=False)