Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,60 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
from transformers import pipeline
|
4 |
from PIL import Image
|
5 |
import os
|
6 |
-
from
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
|
11 |
-
# Load Hugging Face
|
12 |
-
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
|
18 |
-
#
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
if uploaded_file is not None:
|
22 |
-
# Display the uploaded image
|
23 |
image = Image.open(uploaded_file)
|
24 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
25 |
-
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
st.write(
|
|
|
1 |
import streamlit as st
|
2 |
+
import tensorflow as tf
|
|
|
3 |
from PIL import Image
|
4 |
import os
|
5 |
+
from huggingface_hub import hf_hub_url, set_access_token # Import Hugging Face utilities
|
6 |
|
7 |
+
# Title of the Streamlit app
|
8 |
+
st.title("Yellow Rust Severity Prediction")
|
9 |
|
10 |
+
# Load Hugging Face API token from environment
|
11 |
+
huggingface_api_token = os.getenv("HUGGINGFACE_TOKEN")
|
12 |
+
if huggingface_api_token is None:
|
13 |
+
st.error("YellowRust API token not found in environment. Please set it.")
|
14 |
+
st.stop()
|
15 |
|
16 |
+
# Set Hugging Face token for authentication
|
17 |
+
set_access_token(huggingface_api_token)
|
18 |
|
19 |
+
# Model repository details
|
20 |
+
model_repo_id = "your_huggingface_model_repo_id"
|
21 |
+
model_file_path = "final_meta_model.keras"
|
22 |
+
|
23 |
+
# Construct the model URL
|
24 |
+
st.write("Loading model from Hugging Face repo:", model_repo_id)
|
25 |
+
model_url = hf_hub_url(model_repo_id, model_file_path)
|
26 |
+
loaded_model = tf.keras.models.load_model(model_url) # Load model using tf.keras directly
|
27 |
+
|
28 |
+
# Function to make predictions
|
29 |
+
def predict_image(image):
|
30 |
+
image = image.resize((224, 224)) # Resize to match model input dimensions
|
31 |
+
image_array = tf.keras.preprocessing.image.img_to_array(image)
|
32 |
+
image_array = tf.expand_dims(image_array, axis=0) # Expand dimensions for batch prediction
|
33 |
+
predictions = loaded_model.predict(image_array)
|
34 |
+
return predictions
|
35 |
+
|
36 |
+
# Class labels for Yellow Rust severity levels
|
37 |
+
CLASS_LABELS = [
|
38 |
+
"Healthy",
|
39 |
+
"Mild Severity",
|
40 |
+
"Moderate Severity",
|
41 |
+
"Severe Severity",
|
42 |
+
"Very Severe",
|
43 |
+
"Extreme Severity"
|
44 |
+
]
|
45 |
+
|
46 |
+
# Image upload widget
|
47 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
48 |
|
49 |
if uploaded_file is not None:
|
|
|
50 |
image = Image.open(uploaded_file)
|
51 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
52 |
+
|
53 |
+
# Display progress bar
|
54 |
+
with st.spinner("Making predictions..."):
|
55 |
+
predictions = predict_image(image)
|
56 |
+
predicted_class = predictions.argmax(axis=-1)
|
57 |
+
st.write(f"Predicted Severity Level: {CLASS_LABELS[predicted_class[0]]} with confidence {predictions[0][predicted_class[0]]:.2f}")
|
58 |
+
|
59 |
+
else:
|
60 |
+
st.write("Please upload an image file to make predictions.")
|