import streamlit as st import tensorflow as tf from PIL import Image import os from huggingface_hub import hf_hub_url, set_access_token # Import Hugging Face utilities # Title of the Streamlit app st.title("Yellow Rust Severity Prediction") # Load Hugging Face API token from environment huggingface_api_token = os.getenv("HUGGINGFACE_TOKEN") if huggingface_api_token is None: st.error("YellowRust API token not found in environment. Please set it.") st.stop() # Set Hugging Face token for authentication set_access_token(huggingface_api_token) # Model repository details model_repo_id = "your_huggingface_model_repo_id" model_file_path = "final_meta_model.keras" # Construct the model URL st.write("Loading model from Hugging Face repo:", model_repo_id) model_url = hf_hub_url(model_repo_id, model_file_path) loaded_model = tf.keras.models.load_model(model_url) # Load model using tf.keras directly # Function to make predictions def predict_image(image): image = image.resize((224, 224)) # Resize to match model input dimensions image_array = tf.keras.preprocessing.image.img_to_array(image) image_array = tf.expand_dims(image_array, axis=0) # Expand dimensions for batch prediction predictions = loaded_model.predict(image_array) return predictions # Class labels for Yellow Rust severity levels CLASS_LABELS = [ "Healthy", "Mild Severity", "Moderate Severity", "Severe Severity", "Very Severe", "Extreme Severity" ] # Image upload widget uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_column_width=True) # Display progress bar with st.spinner("Making predictions..."): predictions = predict_image(image) predicted_class = predictions.argmax(axis=-1) st.write(f"Predicted Severity Level: {CLASS_LABELS[predicted_class[0]]} with confidence {predictions[0][predicted_class[0]]:.2f}") else: st.write("Please upload an image file to make predictions.")