import streamlit as st import torch from transformers import pipeline from PIL import Image import os from dotenv import load_dotenv # Load environment variables load_dotenv() # Load Hugging Face model model_url = os.getenv('HUGGINGFACE_MODEL_URL') model = torch.hub.load(model_url, 'model', source='hf') # Setup Streamlit st.title('Yellow Rust Severity Prediction') # File uploader uploaded_file = st.file_uploader("Upload an image of Yellow Rust", type=["jpg", "png"]) if uploaded_file is not None: # Display the uploaded image image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_column_width=True) # Process the image and make prediction classifier = pipeline('image-classification', model=model_url) results = classifier(image) severity_level = results[0]['label'] confidence = results[0]['score'] st.write(f"Predicted Severity Level: {severity_level} with confidence: {confidence:.2f}")