import streamlit as st from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.image import img_to_array # Import this function from PIL import Image import numpy as np import os from huggingface_hub import hf_hub_download, login # Title of the Streamlit app st.title("Yellow Rust Severity Prediction") # Authentication using Hugging Face token authkey = os.getenv('YellowRust') login(token=authkey) # Download the model file from Hugging Face model_path = hf_hub_download(repo_id="shaheer-data/Yellow-Rust-Prediction", filename="final_meta_model.keras") # Load the pre-trained model loaded_model = load_model(model_path) # Function to preprocess the uploaded image def preprocess_image(image): # Resize the image to match the model input size (e.g., 224x224 for many pre-trained models) image = image.resize((224, 224)) # Adjust size based on your model input image = img_to_array(image) # Convert image to numpy array image = image / 255.0 # Normalize pixel values to [0, 1] image = np.expand_dims(image, axis=0) # Add batch dimension return image # Streamlit file uploader uploaded_file = st.sidebar.file_uploader("Upload a wheat leaf image", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: st.sidebar.subheader("Uploaded Image") image = Image.open(uploaded_file) st.sidebar.image(image, caption="Uploaded Image", use_container_width=True) # Preprocess the image processed_image = preprocess_image(image) st.subheader("Prediction: With 97% Accuracy") # Perform prediction with st.spinner("Predicting..."): prediction = loaded_model.predict(processed_image) predicted_class = np.argmax(prediction, axis=1)[0] # Get the class index class_labels = ['0', 'MR', 'MRMS', 'MS', 'R', 'S'] # Update based on your classes st.header("Predicted Severity Class") if predicted_class == 0: st.markdown('

Healthy

', unsafe_allow_html=True) st.write("The leaf appears healthy. There is no immediate action required. Continue monitoring as needed.") elif predicted_class == 1: st.markdown('

Mild Rust (MR)

', unsafe_allow_html=True) st.write("Mild rust detected. Applying fungicides will help control further spread.") elif predicted_class == 2: st.markdown('

Moderate Rust (MRMS)

', unsafe_allow_html=True) st.write("Moderate rust detected. Monitor regularly and treat with fungicides.") elif predicted_class == 3: st.markdown('

Severe Rust (MS)

', unsafe_allow_html=True) st.write("Severe rust detected. Prompt fungicide application and continued monitoring are recommended.") elif predicted_class == 4: st.markdown('

Very Severe Rust (R)

', unsafe_allow_html=True) st.write("Very severe rust detected. Intensive control measures and frequent monitoring are required.") elif predicted_class == 5: st.markdown('

Extremely Severe Rust (S)

', unsafe_allow_html=True) st.write("Extremely severe rust detected. Apply aggressive control strategies and seek expert advice.") confidence = np.max(prediction) * 100 st.write(f"**Confidence Level:** {confidence:.2f}%") # Footer st.info("MPHIL Final Year Project By Mr. Asim Khattak")