Spaces:
Sleeping
Sleeping
File size: 86,827 Bytes
9f559a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 |
# SDLC.py
import os
import sys
import shutil
from typing import List, Union, Dict, Annotated, Any
from typing_extensions import TypedDict
from pydantic import BaseModel, Field
from langchain.schema import AIMessage, HumanMessage
from langchain_core.language_models.base import BaseLanguageModel # Correct import path
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
# Add imports for other potential providers if needed
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_anthropic import ChatAnthropic
from tavily import TavilyClient
from dotenv import load_dotenv
import operator
import logging
import ast
import time
from plantuml import PlantUML
from functools import wraps
from tenacity import retry, stop_after_attempt, wait_exponential, wait_fixed, retry_if_exception_type
import nest_asyncio
# --- Basic logging setup ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- Load Environment Variables ---
# Keep load_dotenv() in case some functions still rely on other env vars,
# but LLM/Tavily keys will now come from function args.
load_dotenv()
# --- REMOVED LLM / Tavily Initialization Block ---
# GLOBAL_LLM, OPENAI_LLM, tavily_client will be initialized dynamically
# --- Pydantic Models ---
# (Keep all Pydantic models as they were)
class DiagramSelection(BaseModel):
diagram_types: List[str] = Field(..., description="List of 5 selected UML/DFD diagram types")
justifications: List[str] = Field(..., description="Brief justifications for each diagram type")
class PlantUMLCode(BaseModel):
diagram_type: str = Field(..., description="Type of UML/DFD diagram")
code: str = Field(..., description="PlantUML code for the diagram")
class CodeFile(BaseModel):
filename: str = Field(..., description="Name of the file, including path relative to project root")
content: str = Field(..., description="Full content of the file")
class GeneratedCode(BaseModel):
files: List[CodeFile] = Field(..., description="List of all files in the project")
instructions: str = Field(..., description="Beginner-friendly setup and run instructions")
class TestCase(BaseModel):
description: str = Field(..., description="Description of the test case")
input_data: dict = Field(..., description="Fake input data, must be non-empty")
expected_output: dict = Field(..., description="Expected fake output, must be non-empty")
class TestCases(BaseModel):
test_cases: List[TestCase] = Field(..., description="List of test cases")
# --- Main State Definition ---
class MainState(TypedDict, total=False):
# --- ADDED instance storage ---
llm_instance: BaseLanguageModel | None # Store the initialized LLM
tavily_instance: TavilyClient | None # Store the initialized Tavily client
# --- END ADDED ---
# Core conversation history
messages: Annotated[List[Union[HumanMessage, AIMessage]], lambda x, y: (x or []) + (y or [])]
# Project definition
project_folder: str # Base name/relative path used for saving files
project: str
category: str
subcategory: str
coding_language: str
# User Input Cycle State
user_input_questions: List[str]
user_input_answers: List[str]
user_input_iteration: int
user_input_min_iterations: int
user_input_done: bool
# Core Artifacts
user_query_with_qa: str
refined_prompt: str
final_user_story: str
final_product_review: str
final_design_document: str
final_uml_codes: List[PlantUMLCode]
final_code_files: List[CodeFile]
final_code_review: str
final_security_issues: str
final_test_code_files: List[CodeFile]
final_quality_analysis: str
final_deployment_process: str
# File Paths
final_user_story_path: str
final_product_review_path: str
final_design_document_path: str
final_uml_diagram_folder: str
final_uml_png_paths: List[str]
final_review_security_folder: str
review_code_snapshot_folder: str
final_testing_folder: str
testing_passed_code_folder: str
final_quality_analysis_path: str
final_code_folder: str
final_deployment_path: str
# Intermediate States
user_story_current: str; user_story_feedback: str; user_story_human_feedback: str; user_story_done: bool;
product_review_current: str; product_review_feedback: str; product_review_human_feedback: str; product_review_done: bool;
design_doc_current: str; design_doc_feedback: str; design_doc_human_feedback: str; design_doc_done: bool;
uml_selected_diagrams: List[str]; uml_current_codes: List[PlantUMLCode]; uml_feedback: Dict[str, str]; uml_human_feedback: Dict[str, str]; uml_done: bool;
code_current: GeneratedCode;
code_human_input: str; code_web_search_results: str; code_feedback: str; code_human_feedback: str; code_done: bool;
code_review_current_feedback: str; security_current_feedback: str; review_security_human_feedback: str; review_security_done: bool;
test_cases_current: List[TestCase]; test_cases_feedback: str; test_cases_human_feedback: str; test_cases_passed: bool;
quality_current_analysis: str; quality_feedback: str; quality_human_feedback: str; quality_done: bool;
deployment_current_process: str; deployment_feedback: str; deployment_human_feedback: str; deployment_done: bool;
# --- Constants and Helper Functions ---
PLANTUML_SYNTAX_RULES = { # Keep the full dictionary
# ... (plantuml rules dictionary remains unchanged) ...
"Activity Diagram": {"template": "@startuml\nstart\nif (condition) then (yes)\n :action1;\nelse (no)\n :action2;\nendif\nwhile (condition)\n :action3;\nendwhile\nstop\n@enduml", "required_keywords": ["start", ":", "stop"], "notes": "Conditionals: if/else/endif. Loops: while/endwhile. Actions: :action;."},
"Sequence Diagram": {"template": "@startuml\nparticipant A\nparticipant B\nA -> B : message\nalt condition\n B --> A : success\nelse\n B --> A : failure\nend\n@enduml", "required_keywords": ["participant", "->", "-->"], "notes": "-> solid line, --> dashed line. alt/else/end for alternatives."},
"Use Case Diagram": {"template": "@startuml\nactor User\nusecase (UC1)\nUser --> (UC1)\n@enduml", "required_keywords": ["actor", "-->", "("], "notes": "Define actors and use cases, connect with -->."},
"Class Diagram": {"template": "@startuml\nclass MyClass {\n +field: Type\n +method()\n}\nMyClass --> OtherClass\n@enduml", "required_keywords": ["class", "{", "}", "-->"], "notes": "Define classes, attributes, methods. --> association, <|-- inheritance."},
"State Machine Diagram": {"template": "@startuml\n[*] --> State1\nState1 --> State2 : event [condition] / action\nState2 --> [*]\n@enduml", "required_keywords": ["[*]", "-->", ":"], "notes": "[*] start/end. --> transitions with event/condition/action."},
"Object Diagram": {"template": "@startuml\nobject obj1: Class1\nobj1 : attr = val\nobj1 --> obj2\n@enduml", "required_keywords": ["object", ":", "-->"], "notes": "Define objects (instances), set attributes, link."},
"Component Diagram": {"template": "@startuml\ncomponent Comp1\ninterface Iface\nComp1 ..> Iface\nComp1 --> Comp2\n@enduml", "required_keywords": ["component", "-->"], "notes": "Define components, interfaces. --> dependency, ..> usage."},
"Deployment Diagram": {"template": "@startuml\nnode Server {\n artifact app.jar\n}\n@enduml", "required_keywords": ["node", "artifact"], "notes": "Nodes for hardware/software envs, artifacts for deployed items."},
"Package Diagram": {"template": "@startuml\npackage \"My Package\" {\n class ClassA\n}\n@enduml", "required_keywords": ["package", "{"], "notes": "Group elements."},
"Composite Structure Diagram": {"template": "@startuml\nclass Composite {\n +part1 : Part1\n}\nComposite *-- Part1\n@enduml", "required_keywords": ["class", "{", "}", "*--"], "notes": "Show internal structure, *-- composition."},
"Timing Diagram": {"template": "@startuml\nrobust \"User\" as U\nconcise \"System\" as S\n@0\nU is Idle\nS is Ready\n@100\nU -> S : Request()\nS is Processing\n@300\nS --> U : Response()\nU is Active\nS is Ready\n@enduml", "required_keywords": ["@", "is"], "notes": "Show state changes over time."},
"Interaction Overview Diagram": {"template": "@startuml\nstart\nif (condition?) then (yes)\n ref over Actor : Interaction1\nelse (no)\n :Action A;\nendif\nstop\n@enduml", "required_keywords": ["start", ":", "ref", "stop"], "notes": "Combine activity diagrams with interaction refs."},
"Communication Diagram": {"template": "@startuml\nobject O1\nobject O2\nO1 -> O2 : message()\n@enduml", "required_keywords": ["object", "->", ":"], "notes": "Focus on object interactions."},
"Profile Diagram": {"template": "@startuml\nprofile MyProfile {\n stereotype MyStereotype\n}\n@enduml", "required_keywords": ["profile", "stereotype"], "notes": "Define custom stereotypes and tagged values."},
"Context Diagram (Level 0 DFD)": {"template": "@startuml\nrectangle System as S\nentity External as E\nE --> S : Data Input\nS --> E : Data Output\n@enduml", "required_keywords": ["rectangle", "entity", "-->", ":"], "notes": "System boundary, external entities, major data flows."},
"Level 1 DFD": {"template": "@startuml\nentity E\nrectangle P1\nrectangle P2\ndatabase DS\nE --> P1 : Input\nP1 --> P2 : Data\nP1 --> DS : Store\nP2 --> E : Output\n@enduml", "required_keywords": ["rectangle", "entity", "database", "-->", ":"], "notes": "Major processes, data stores, flows between them."},
"Level 2 DFD": {"template": "@startuml\nrectangle P1.1\nrectangle P1.2\ndatabase DS\nP1.1 --> P1.2 : Internal Data\nP1.2 --> DS : Store Detail\n@enduml", "required_keywords": ["rectangle", "-->", ":"], "notes": "Decomposition of Level 1 processes."},
"Level 3 DFD": {"template": "@startuml\nrectangle P1.1.1\nrectangle P1.1.2\nP1.1.1 --> P1.1.2 : Sub-detail\n@enduml", "required_keywords": ["rectangle", "-->", ":"], "notes": "Further decomposition."},
"General DFD": {"template": "@startuml\nentity E\nrectangle P\ndatabase DS\nE --> P : Input\nP --> DS : Store\nDS --> P : Retrieve\nP --> E : Output\n@enduml", "required_keywords": ["entity", "rectangle", "database", "-->", ":"], "notes": "Generic structure for DFDs."},
}
def validate_plantuml_code(diagram_type: str, code: str) -> bool:
# (validate_plantuml_code function remains unchanged)
if diagram_type not in PLANTUML_SYNTAX_RULES:
logger.warning(f"Unknown diagram type for validation: {diagram_type}")
return False
rules = PLANTUML_SYNTAX_RULES[diagram_type]
required_keywords = rules.get("required_keywords", [])
if not code:
logger.warning(f"Empty code provided for {diagram_type}.")
return False
code_cleaned = code.strip()
if not code_cleaned.startswith("@startuml"):
logger.warning(f"PlantUML code for {diagram_type} does not start with @startuml.")
if not code_cleaned.endswith("@enduml"):
logger.warning(f"PlantUML code for {diagram_type} does not end with @enduml.")
if required_keywords:
missing_keywords = [kw for kw in required_keywords if kw not in code]
if missing_keywords:
logger.warning(f"PlantUML code for {diagram_type} missing required keywords: {missing_keywords}.")
return True
# --- UPDATED: Initialization Function ---
def initialize_llm_clients(provider: str, model_name: str, llm_api_key: str, tavily_api_key: str) -> tuple[BaseLanguageModel | None, TavilyClient | None, str | None]:
"""
Initializes LLM and Tavily clients based on user-provided configuration.
Applies nest_asyncio patch for compatibility with Streamlit threads.
"""
# --- ADDED: Apply nest_asyncio ---
nest_asyncio.apply()
# --- END ADDED ---
llm_instance = None
tavily_instance = None
error_message = None
provider_lower = provider.lower()
# --- Initialize LLM ---
try:
logger.info(f"Attempting to initialize LLM: Provider='{provider}', Model='{model_name}'")
if not llm_api_key:
raise ValueError("LLM API Key is required.")
if provider_lower == "openai":
llm_instance = ChatOpenAI(model=model_name, temperature=0.5, api_key=llm_api_key)
elif provider_lower == "groq":
llm_instance = ChatGroq(model=model_name, temperature=0.5, api_key=llm_api_key)
elif provider_lower == "google":
# This initialization should now work after nest_asyncio.apply()
llm_instance = ChatGoogleGenerativeAI(model=model_name, google_api_key=llm_api_key, temperature=0.5)
elif provider_lower == "anthropic":
llm_instance = ChatAnthropic(model=model_name, anthropic_api_key=llm_api_key, temperature=0.5)
elif provider_lower == "xai":
xai_base_url = "https://api.x.ai/v1"
logger.info(f"Using xAI endpoint: {xai_base_url}")
llm_instance = ChatOpenAI(model=model_name, temperature=0.5, api_key=llm_api_key, base_url=xai_base_url)
else:
raise ValueError(f"Unsupported LLM provider: {provider}")
# Optional: Test call
# ...
logger.info(f"LLM {provider} - {model_name} initialized successfully.")
except ValueError as ve:
error_message = str(ve); logger.error(f"LLM Init Error: {error_message}"); llm_instance = None
except ImportError:
error_message = f"Missing library for {provider}. Install required package."; logger.error(error_message); llm_instance = None
except Exception as e:
# Check if it's the event loop error specifically, although nest_asyncio should fix it
if "no current event loop" in str(e):
error_message = f"Asyncio event loop issue persists even with nest_asyncio for {provider}: {e}"
else:
error_message = f"Unexpected error initializing LLM for {provider}: {e}"
logger.error(error_message, exc_info=True); llm_instance = None
# --- Initialize Tavily (No change) ---
# (Tavily part remains the same)
if tavily_api_key:
try:
logger.info("Initializing Tavily client..."); tavily_instance = TavilyClient(api_key=tavily_api_key); logger.info("Tavily client initialized.")
except Exception as e:
tavily_err = f"Failed to initialize Tavily: {e}"; logger.error(tavily_err, exc_info=True)
if error_message is None: error_message = tavily_err
tavily_instance = None
else: logger.warning("Tavily API Key not provided."); tavily_instance = None
return llm_instance, tavily_instance, error_message
# --- Modified Retry Decorator ---
# Removed the initial GLOBAL_LLM check
def with_retry(func):
"""Decorator to add retry logic to functions, especially LLM calls."""
@wraps(func)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=2, max=10),
retry=retry_if_exception_type(Exception),
before_sleep=lambda rs: logger.warning(
f"Retrying {func.__name__} (attempt {rs.attempt_number}) after {rs.next_action.sleep:.2f}s delay..."
)
)
def wrapper(*args, **kwargs):
try:
# Execute the decorated function
return func(*args, **kwargs)
except Exception as e:
# Log the error after all retries have failed
logger.error(f"Error in {func.__name__} after retries: {e}", exc_info=True)
raise # Re-raise the exception
return wrapper
# --- Workflow Functions ---
# --- MODIFIED TO USE state['llm_instance'] and state['tavily_instance'] ---
# --- User Input Cycle ---
@with_retry
def generate_questions(state: MainState) -> MainState:
"""Generates clarification questions."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
context = f"Project: {state['project']} ({state['category']}/{state['subcategory']}) in {state['coding_language']}."
iteration = state.get("user_input_iteration", 0)
if iteration == 0:
prompt = f"You are a requirements analyst. Ask exactly 5 concise questions to clarify the initial needs for this project: {context}"
else:
qa_history = "\n".join([f"Q: {q}\nA: {a}" for q, a in zip(state.get("user_input_questions",[]), state.get("user_input_answers",[]))])
prompt = f"Based on the previous Q&A for the project ({context}), ask up to 5 more concise clarification questions...\nPrevious Q&A:\n{qa_history}"
response = llm.invoke(prompt) # Use LLM from state
questions = [q.strip() for q in response.content.strip().split("\n") if q.strip()]
state["user_input_questions"] = state.get("user_input_questions", []) + questions
state["messages"].append(AIMessage(content="\n".join(questions)))
logger.info(f"Generated {len(questions)} questions for iteration {iteration}.")
return state
@with_retry
def refine_prompt(state: MainState) -> MainState:
"""Synthesizes Q&A into a refined prompt."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
qa_history = "\n".join([f"Q: {q}\nA: {a}" for q, a in zip(state.get("user_input_questions",[]), state.get("user_input_answers",[]))])
prompt = f"Based on the following Q&A history for project '{state['project']}', synthesize a concise 'Refined Prompt'...\nQ&A History:\n{qa_history}\n---\nOutput ONLY the refined prompt text."
response = llm.invoke(prompt) # Use LLM from state
refined_prompt_text = response.content.strip()
state["refined_prompt"] = refined_prompt_text
state["user_query_with_qa"] = qa_history
state["messages"].append(AIMessage(content=f"Refined Prompt:\n{refined_prompt_text}"))
logger.info("Refined project prompt based on Q&A.")
# Save logic remains the same
try:
project_folder_name = state.get("project_folder", "default_project")
abs_project_folder = os.path.abspath(project_folder_name)
intro_dir = os.path.join(abs_project_folder, "1_intro")
os.makedirs(intro_dir, exist_ok=True)
qa_path = os.path.join(intro_dir, "user_query_with_qa.txt")
prompt_path = os.path.join(intro_dir, "refined_prompt.md")
with open(qa_path, "w", encoding="utf-8") as f: f.write(qa_history)
with open(prompt_path, "w", encoding="utf-8") as f: f.write(refined_prompt_text)
logger.info(f"Saved Q&A history and refined prompt to {intro_dir}")
except Exception as e: logger.error(f"Failed to save intro files: {e}", exc_info=True)
return state
# --- User Story Cycle ---
@with_retry
def generate_initial_user_stories(state: MainState) -> MainState:
"""Generates initial user stories."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
prompt = f"Generate a list of user stories for project '{state['project']}' using standard format 'As a..., I want..., so that...'. Base on:\nRefined Prompt:\n{state['refined_prompt']}"
response = llm.invoke(prompt) # Use LLM from state
initial_user_stories = response.content.strip()
state["user_story_current"] = initial_user_stories
state["messages"].append(AIMessage(content=f"Initial User Stories:\n{initial_user_stories}"))
logger.info("Generated Initial User Stories.")
return state
@with_retry
def generate_user_story_feedback(state: MainState) -> MainState:
"""Generates AI feedback on user stories."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
prompt = f"Act as QA. Review user stories for clarity, atomicity, testability, alignment...\nUser Stories:\n{state.get('user_story_current', 'N/A')}\n---\nRefined Prompt (Context):\n{state.get('refined_prompt', 'N/A')[:500]}..."
response = llm.invoke(prompt) # Use LLM from state
feedback = response.content.strip()
state["user_story_feedback"] = feedback
state["messages"].append(AIMessage(content=f"User Story Feedback:\n{feedback}"))
logger.info("Generated feedback on user stories.")
return state
@with_retry
def refine_user_stories(state: MainState) -> MainState:
"""Refines user stories based on feedback."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
prompt = f"Refine user stories for '{state['project']}' based on feedback.\nCurrent Stories:\n{state.get('user_story_current', 'N/A')}\nAI FB:\n{state.get('user_story_feedback', 'N/A')}\nHuman FB:\n{state.get('user_story_human_feedback', 'N/A')}\n---\nOutput refined list."
response = llm.invoke(prompt) # Use LLM from state
refined_user_stories = response.content.strip()
state["user_story_current"] = refined_user_stories
state["messages"].append(AIMessage(content=f"Refined User Stories:\n{refined_user_stories}"))
logger.info("Refined User Stories based on feedback.")
return state
# save_final_user_story remains unchanged (no LLM calls)
def save_final_user_story(state: MainState) -> MainState:
"""Saves the final version of user stories to a file and updates the state."""
state["final_user_story"] = state.get("user_story_current", "No user stories generated.")
filepath = None # Initialize path as None
try:
abs_project_folder = os.path.abspath(state["project_folder"])
us_dir = os.path.join(abs_project_folder, "2_user_story")
os.makedirs(us_dir, exist_ok=True)
filepath = os.path.join(us_dir, "final_user_story.md")
with open(filepath, "w", encoding="utf-8") as f:
f.write(state["final_user_story"])
logger.info(f"Saved final user story to: {filepath}")
except Exception as e:
logger.error(f"Failed to save final user story: {e}", exc_info=True)
filepath = None # Ensure path is None if saving failed
state["final_user_story_path"] = filepath
return state
# --- Product Owner Review Cycle ---
@with_retry
def generate_initial_product_review(state: MainState) -> MainState:
"""Generates an initial product review."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
prompt = f"Act as Product Owner for '{state['project']}'. Review prompt and stories, assess alignment, completeness, concerns...\nPrompt:\n{state.get('refined_prompt', 'N/A')}\nStories:\n{state.get('final_user_story', 'N/A')}"
response = llm.invoke(prompt) # Use LLM from state
initial_review = response.content.strip()
state["product_review_current"] = initial_review
state["messages"].append(AIMessage(content=f"Initial Product Review:\n{initial_review}"))
logger.info("Generated initial product owner review.")
return state
@with_retry
def generate_product_review_feedback(state: MainState) -> MainState:
"""Generates AI feedback on the product review."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
prompt = f"Review the PO assessment for clarity, logic, priorities...\nPO Review:\n{state.get('product_review_current', 'N/A')}\nStories (Context):\n{state.get('final_user_story', 'N/A')[:1000]}..."
response = llm.invoke(prompt) # Use LLM from state
feedback = response.content.strip()
state["product_review_feedback"] = feedback
state["messages"].append(AIMessage(content=f"Product Review Feedback:\n{feedback}"))
logger.info("Generated feedback on product review.")
return state
@with_retry
def refine_product_review(state: MainState) -> MainState:
"""Refines the product review based on feedback."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
prompt = f"Refine the PO review for '{state['project']}' based on feedback.\nCurrent:\n{state.get('product_review_current', 'N/A')}\nAI FB:\n{state.get('product_review_feedback', 'N/A')}\nHuman FB:\n{state.get('product_review_human_feedback', 'N/A')}\n---\nOutput refined review."
response = llm.invoke(prompt) # Use LLM from state
refined_review = response.content.strip()
state["product_review_current"] = refined_review
state["messages"].append(AIMessage(content=f"Refined Product Review:\n{refined_review}"))
logger.info("Refined product owner review.")
return state
# save_final_product_review remains unchanged
def save_final_product_review(state: MainState) -> MainState:
"""Saves the final product review to a file."""
state["final_product_review"] = state.get("product_review_current", "No review generated.")
filepath = None
try:
abs_project_folder = os.path.abspath(state["project_folder"])
pr_dir = os.path.join(abs_project_folder, "3_product_review")
os.makedirs(pr_dir, exist_ok=True)
filepath = os.path.join(pr_dir, "final_product_review.md")
with open(filepath, "w", encoding="utf-8") as f:
f.write(state["final_product_review"])
logger.info(f"Saved final product review to: {filepath}")
except Exception as e:
logger.error(f"Failed to save final product review: {e}", exc_info=True)
filepath = None
state["final_product_review_path"] = filepath
return state
# --- Design Document Cycle ---
@with_retry
def generate_initial_design_doc(state: MainState) -> MainState:
"""Generates the initial design document."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
prompt = f"Act as System Architect for '{state['project']}'. Create high-level design (Arch, Components, Data, API, Tech, Deploy) based on...\nPrompt:\n{state.get('refined_prompt', 'N/A')}\nStories:\n{state.get('final_user_story', 'N/A')}\nReview:\n{state.get('final_product_review', 'N/A')}"
response = llm.invoke(prompt) # Use LLM from state
initial_doc = response.content.strip()
state["design_doc_current"] = initial_doc
state["messages"].append(AIMessage(content=f"Initial Design Document:\n{initial_doc}"))
logger.info("Generated Initial Design Document")
return state
@with_retry
def generate_design_doc_feedback(state: MainState) -> MainState:
"""Generates AI feedback on the design document."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
prompt = f"Review Design Doc for completeness, clarity, consistency, feasibility...\nDoc:\n{state.get('design_doc_current', 'N/A')}\nStories (Context):\n{state.get('final_user_story', 'N/A')[:1000]}..."
response = llm.invoke(prompt) # Use LLM from state
feedback = response.content.strip()
state["design_doc_feedback"] = feedback
state["messages"].append(AIMessage(content=f"Design Document Feedback:\n{feedback}"))
logger.info("Generated Design Document Feedback")
return state
@with_retry
def refine_design_doc(state: MainState) -> MainState:
"""Refines the design document based on feedback."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
prompt = f"Refine Design Doc for '{state['project']}' based on feedback.\nCurrent:\n{state.get('design_doc_current', 'N/A')}\nAI FB:\n{state.get('design_doc_feedback', 'N/A')}\nHuman FB:\n{state.get('design_doc_human_feedback', 'N/A')}\n---\nOutput refined doc."
response = llm.invoke(prompt) # Use LLM from state
refined_doc = response.content.strip()
state["design_doc_current"] = refined_doc
state["messages"].append(AIMessage(content=f"Refined Design Document:\n{refined_doc}"))
logger.info("Refined Design Document")
return state
# save_final_design_doc remains unchanged
def save_final_design_doc(state: MainState) -> MainState:
"""Saves the final design document."""
state["final_design_document"] = state.get("design_doc_current", "No design generated.")
filepath = None
try:
abs_project_folder = os.path.abspath(state["project_folder"])
dd_dir = os.path.join(abs_project_folder, "4_design_doc")
os.makedirs(dd_dir, exist_ok=True)
filepath = os.path.join(dd_dir, "final_design_document.md")
with open(filepath, "w", encoding="utf-8") as f: f.write(state["final_design_document"])
logger.info(f"Saved final design doc: {filepath}")
except Exception as e: logger.error(f"Failed save design doc: {e}", exc_info=True); filepath = None
state["final_design_document_path"] = filepath
return state
# --- UML Diagram Cycle ---
@with_retry
def select_uml_diagrams(state: MainState) -> MainState:
"""Selects relevant UML/DFD diagram types."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
all_diagram_types = ', '.join(PLANTUML_SYNTAX_RULES.keys())
prompt = f"Select 5 most relevant UML/DFD types for '{state['project']}' from list [{all_diagram_types}] based on Design Doc:\n{state.get('final_design_document', 'N/A')}\nJustify choices. Output ONLY JSON (DiagramSelection model)."
structured_llm = llm.with_structured_output(DiagramSelection) # Use LLM from state
response = structured_llm.invoke(prompt)
unique_types = list(dict.fromkeys(response.diagram_types))[:5]
final_justifications = response.justifications[:len(unique_types)]
state["uml_selected_diagrams"] = unique_types
display_msg = "Selected Diagrams:\n" + "\n".join(f"- {dt} - {j}" for dt, j in zip(unique_types, final_justifications))
state["messages"].append(AIMessage(content=display_msg))
logger.info(f"Selected UML Diagrams: {', '.join(unique_types)}")
return state
@with_retry
def generate_initial_uml_codes(state: MainState) -> MainState:
"""Generates initial PlantUML code for selected diagram types."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
generated_codes = []
selected_diagrams = state.get("uml_selected_diagrams", [])
if not selected_diagrams: logger.warning("No diagrams selected."); state["uml_current_codes"] = []; return state
logger.info(f"Generating initial PlantUML code for: {', '.join(selected_diagrams)}")
for diagram_type in selected_diagrams:
syntax_info = PLANTUML_SYNTAX_RULES.get(diagram_type, {})
default_code = "@startuml\n' Default template\n@enduml"
code_to_use = syntax_info.get("template", default_code)
prompt = f"Generate PlantUML code for a '{diagram_type}' for '{state['project']}'. Base on Design Doc:\n{state.get('final_design_document', 'N/A')[:2000]}...\nAdhere to syntax:\nTemplate:\n{syntax_info.get('template', 'N/A')}\nNotes: {syntax_info.get('notes', 'N/A')}\n---\nGenerate ONLY the PlantUML code block."
try:
structured_llm = llm.with_structured_output(PlantUMLCode) # Use LLM from state
response = structured_llm.invoke(prompt)
generated_code = response.code.strip() if response and response.code else ""
if validate_plantuml_code(diagram_type, generated_code): code_to_use = generated_code
else: logger.warning(f"Generated code for {diagram_type} failed validation. Using template.")
except Exception as e: logger.error(f"Failed to generate/validate PlantUML for {diagram_type}: {e}. Using template.", exc_info=True)
generated_codes.append(PlantUMLCode(diagram_type=diagram_type, code=code_to_use))
state["uml_current_codes"] = generated_codes
summary = "\n".join([f"**{c.diagram_type}**:\n```plantuml\n{c.code}\n```" for c in generated_codes])
state["messages"].append(AIMessage(content=f"Generated Initial UML Codes:\n{summary}"))
logger.info(f"Generated initial code for {len(generated_codes)} UML diagrams.")
return state
@with_retry
def generate_uml_feedback(state: MainState) -> MainState:
"""Generates AI feedback for each current UML diagram."""
# Use primary LLM from state, fallback needed? Or rely on app config? Assuming primary.
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
feedback_dict = {}
current_codes = state.get('uml_current_codes', [])
if not current_codes: logger.warning("No UML codes for feedback."); state["uml_feedback"] = {}; return state
logger.info(f"Generating feedback for {len(current_codes)} UML diagrams.")
for plantuml_code in current_codes:
diagram_type = plantuml_code.diagram_type; code_to_review = plantuml_code.code
syntax_info = PLANTUML_SYNTAX_RULES.get(diagram_type, {})
prompt = f"Review PlantUML code for '{diagram_type}' of '{state['project']}'. Check Syntax, Alignment with Design, Clarity.\nSyntax (Ref):\n{syntax_info.get('template', 'N/A')}\nNotes: {syntax_info.get('notes', 'N/A')}\nCode:\n```plantuml\n{code_to_review}\n```\nDesign (Context):\n{state.get('final_design_document', 'N/A')[:1000]}...\n---\nProvide feedback."
try:
# Maybe use OPENAI_LLM if available and different? For now, use primary.
response = llm.invoke(prompt) # Use LLM from state
feedback_dict[diagram_type] = response.content.strip()
except Exception as e: logger.error(f"Failed feedback for {diagram_type}: {e}"); feedback_dict[diagram_type] = f"Error: {e}"
state["uml_feedback"] = feedback_dict
summary = "\n\n".join([f"**Feedback for {dt}:**\n{fb}" for dt, fb in feedback_dict.items()])
state["messages"].append(AIMessage(content=f"UML Feedback Provided:\n{summary}"))
logger.info("Generated feedback for all current UML diagrams.")
return state
@with_retry
def refine_uml_codes(state: MainState) -> MainState:
"""Refines UML codes based on feedback."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
refined_codes_list = []
current_codes = state.get('uml_current_codes', [])
ai_feedback = state.get('uml_feedback', {})
human_feedback = state.get('uml_human_feedback', {})
if not current_codes: logger.warning("No UML codes to refine."); return state
logger.info(f"Refining {len(current_codes)} UML diagrams.")
for plantuml_code_obj in current_codes:
diagram_type = plantuml_code_obj.diagram_type; current_code = plantuml_code_obj.code
syntax_info = PLANTUML_SYNTAX_RULES.get(diagram_type, {})
specific_human_feedback = human_feedback.get(diagram_type, human_feedback.get('all', 'N/A'))
prompt = f"Refine PlantUML for '{diagram_type}' of '{state['project']}' based on feedback.\nSyntax (Ref):\n{syntax_info.get('template', 'N/A')}\nNotes: {syntax_info.get('notes', 'N/A')}\nCurrent:\n```plantuml\n{current_code}\n```\nAI FB:\n{ai_feedback.get(diagram_type, 'N/A')}\nHuman FB:\n{specific_human_feedback}\n---\nGenerate ONLY refined PlantUML block."
try:
structured_llm = llm.with_structured_output(PlantUMLCode) # Use LLM from state
response = structured_llm.invoke(prompt)
refined_code = response.code.strip() if response and response.code else ""
if validate_plantuml_code(diagram_type, refined_code):
refined_codes_list.append(PlantUMLCode(diagram_type=diagram_type, code=refined_code))
else: logger.warning(f"Refined {diagram_type} invalid. Reverting."); refined_codes_list.append(plantuml_code_obj)
except Exception as e: logger.error(f"Failed refine {diagram_type}: {e}. Reverting.", exc_info=True); refined_codes_list.append(plantuml_code_obj)
state["uml_current_codes"] = refined_codes_list
summary = "\n".join([f"**{c.diagram_type} (Refined):**\n```plantuml\n{c.code}\n```" for c in refined_codes_list])
state["messages"].append(AIMessage(content=f"Refined UML Codes:\n{summary}"))
logger.info(f"Refined {len(refined_codes_list)} UML diagrams.")
return state
# save_final_uml_diagrams remains unchanged (no LLM calls)
def save_final_uml_diagrams(state: MainState) -> MainState:
"""Saves the final Puml files and attempts to generate PNGs."""
state["final_uml_codes"] = state.get("uml_current_codes", [])
png_paths = [] # List to store paths of successfully generated PNGs
uml_dir = None
try:
abs_project_folder = os.path.abspath(state["project_folder"])
uml_dir = os.path.join(abs_project_folder, "5_uml_diagrams")
os.makedirs(uml_dir, exist_ok=True)
state["final_uml_diagram_folder"] = uml_dir # Store path to folder
can_generate_png = False
server = None
try:
server = PlantUML(url="http://www.plantuml.com/plantuml/png/")
can_generate_png = True
logger.info("PlantUML server connection appears OK.")
except Exception as p_e:
logger.warning(f"PlantUML server connection failed: {p_e}. PNG generation will be skipped. Check Java/PlantUML setup and network connectivity.", exc_info=True)
if not state["final_uml_codes"]:
logger.warning("No UML codes found to save."); state["final_uml_png_paths"] = []; return state
logger.info(f"Saving {len(state['final_uml_codes'])} UML diagrams to {uml_dir}...")
for i, pc in enumerate(state["final_uml_codes"], 1):
safe_type_name = "".join(c if c.isalnum() or c in ['_','-'] else '_' for c in pc.diagram_type).lower()
name = f"diagram_{i}_{safe_type_name}"
puml_path = os.path.join(uml_dir, f"{name}.puml")
png_path = os.path.join(uml_dir, f"{name}.png")
try:
with open(puml_path, "w", encoding="utf-8") as f: f.write(pc.code)
logger.debug(f"Saved PUML file: {puml_path}")
except Exception as file_e: logger.error(f"Error saving PUML file {puml_path}: {file_e}", exc_info=True); continue
if can_generate_png and server:
logger.debug(f"Attempting PNG generation for {name}...")
try:
server.processes_file(filename=puml_path, outfile=png_path)
if os.path.exists(png_path) and os.path.getsize(png_path) > 0:
logger.info(f"Successfully generated PNG: {png_path}"); png_paths.append(png_path)
else: logger.error(f"PlantUML processed '{name}' but output PNG is missing or empty: {png_path}")
except FileNotFoundError as fnf_err: logger.error(f"PNG generation failed for {name}: Executable/Java not found? Error: {fnf_err}", exc_info=False)
except Exception as png_e: logger.error(f"PNG generation failed for {name} ({pc.diagram_type}): {png_e}", exc_info=False)
elif not can_generate_png: logger.debug(f"Skipping PNG generation for {name} due to server connection issue.")
state["final_uml_png_paths"] = png_paths
logger.info(f"Finished UML saving. Saved {len(state['final_uml_codes'])} PUML files. Generated {len(png_paths)} PNG files.")
except Exception as e:
logger.error(f"General error in save_final_uml_diagrams: {e}", exc_info=True)
state["final_uml_diagram_folder"] = None; state["final_uml_png_paths"] = []
return state
# --- Code Generation Cycle ---
@with_retry
def generate_initial_code(state: MainState) -> MainState:
"""Generates the initial codebase."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
uml_types = ', '.join([c.diagram_type for c in state.get('final_uml_codes', [])])
prompt = f"Generate complete, runnable '{state['coding_language']}' project for '{state['project']}'. Base on Design Doc, User Stories, and UML ({uml_types}). Include main scripts, modules, requirements, basic README, comments.\nDesign:\n{state.get('final_design_document', 'N/A')}\nStories (Context):\n{state.get('final_user_story', 'N/A')}...\n---\nOutput ONLY JSON (GeneratedCode model)."
structured_llm = llm.with_structured_output(GeneratedCode) # Use LLM from state
response = structured_llm.invoke(prompt)
if not response or not isinstance(response, GeneratedCode) or not response.files:
logger.error("Initial code gen failed or invalid format."); raise ValueError("Did not produce expected file structure.")
state["code_current"] = response
summary = f"Generated {len(response.files)} files. Key: {', '.join([f.filename for f in response.files[:3]])}...\nInstructions:\n{response.instructions[:200]}..."
state["messages"].append(AIMessage(content=f"Initial Code Generation:\n{summary}"))
logger.info(f"Generated initial code with {len(response.files)} files.")
return state
@with_retry
def web_search_code(state: MainState) -> MainState:
"""Performs web search based on user feedback."""
tavily = state.get('tavily_instance') # Use Tavily from state
if not tavily: logger.warning("Tavily client not in state, skipping web search."); state["code_web_search_results"] = "Skipped (Tavily client not configured)"; state["messages"].append(AIMessage(content="Web Search: Skipped")); return state
if 'messages' not in state: state['messages'] = []
human_input = state.get('code_human_input', '')
if not human_input or not human_input.strip(): logger.info("Skipping web search - no issue provided."); state["code_web_search_results"] = "Skipped (No specific issue)"; state["messages"].append(AIMessage(content="Web Search: Skipped")); return state
human_input_summary = human_input[:200]; coding_language = state.get('coding_language', 'programming'); project_context = state.get('project', 'project')[:50]
search_query = f"{coding_language} issues related to '{human_input_summary}' in {project_context}"
logger.info(f"Performing Tavily search: {search_query}")
try:
response = tavily.search(query=search_query, search_depth="basic", max_results=3) # Use tavily from state
search_results = response.get("results", [])
if search_results:
results_text = "\n\n".join([f"**{r.get('title', 'N/A')}**\nURL: {r.get('url', 'N/A')}\nSnippet: {r.get('content', 'N/A')[:300]}..." for r in search_results])
state["code_web_search_results"] = results_text; logger.info(f"Tavily found {len(search_results)} results.")
else: state["code_web_search_results"] = "No relevant results found."; logger.info("Tavily found no results.")
except Exception as e:
error_detail = str(e); logger.error(f"Tavily search failed: {error_detail}", exc_info=True); state["code_web_search_results"] = f"Error during web search: {e}"
summary = state['code_web_search_results'][:500] + ('...' if len(state['code_web_search_results']) > 500 else '')
state["messages"].append(AIMessage(content=f"Web Search Summary:\n{summary}"))
logger.info("Completed Web Search.")
return state
@with_retry
def generate_code_feedback(state: MainState) -> MainState:
"""Generates AI feedback on the current code."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
func_name = "generate_code_feedback"
code_c = state.get("code_current"); instructions = ""
# --- CORRECTED LOOP ---
code_str_parts = []; total_len = 0; max_code_len = 250000
files_to_process = code_c.files if code_c and isinstance(code_c, GeneratedCode) else []
if not files_to_process: logger.warning(f"No files in code_current for {func_name}"); code_content = "No code files provided."; instructions = "N/A"
else:
instructions = code_c.instructions
for file in files_to_process:
header = f"--- {file.filename} ---\n"; remaining_len = max_code_len - total_len - len(header)
if remaining_len <= 0: code_str_parts.append("\n*... (Code context truncated)*"); logger.debug(f"Code context truncated for {func_name}"); break
snippet = file.content[:remaining_len]; is_truncated = len(file.content) > remaining_len
code_str_parts.append(header + snippet + ('...' if is_truncated else '')); total_len += len(header) + len(snippet)
if total_len >= max_code_len:
if not code_str_parts[-1].endswith("truncated)*"): code_str_parts.append("\n*... (Code context truncated)*")
logger.debug(f"Code context max length for {func_name}"); break
code_content = "\n".join(code_str_parts)
# --- END CORRECTED LOOP ---
prompt = f"Act as reviewer for '{state['project']}' ({state['coding_language']}). Review code, instructions, user feedback, search results. Suggest improvements.\nCode:\n{code_content}\nInstr:\n{instructions}\nUser FB:\n{state.get('code_human_input', 'N/A')}\nSearch:\n{state.get('code_web_search_results', 'N/A')}\n---\nProvide feedback."
response = llm.invoke(prompt) # Use LLM from state
feedback_text = response.content.strip()
state["code_feedback"] = feedback_text
state["messages"].append(AIMessage(content=f"AI Code Feedback:\n{feedback_text}"))
logger.info("Generated AI feedback on the code.")
return state
@with_retry
def refine_code(state: MainState) -> MainState:
"""Refines the code based on feedback."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
func_name = "refine_code"
code_c = state.get("code_current"); instructions = ""
# --- CORRECTED LOOP ---
code_str_parts = []; total_len = 0; max_code_len = 25000
files_to_process = code_c.files if code_c and isinstance(code_c, GeneratedCode) else []
if not files_to_process: logger.warning(f"No files in code_current for {func_name}"); code_content = "No previous code."; instructions = state.get("code_current", GeneratedCode(files=[], instructions="")).instructions
else:
instructions = code_c.instructions
for file in files_to_process:
header = f"--- {file.filename} ---\n"; remaining_len = max_code_len - total_len - len(header)
if remaining_len <= 0: code_str_parts.append("\n*... (Code context truncated)*"); logger.debug(f"Code context truncated for {func_name}"); break
snippet = file.content[:remaining_len]; is_truncated = len(file.content) > remaining_len
code_str_parts.append(header + snippet + ('...' if is_truncated else '')); total_len += len(header) + len(snippet)
if total_len >= max_code_len:
if not code_str_parts[-1].endswith("truncated)*"): code_str_parts.append("\n*... (Code context truncated)*")
logger.debug(f"Code context max length for {func_name}"); break
code_content = "\n".join(code_str_parts)
# --- END CORRECTED LOOP ---
prompt = f"Act as senior {state['coding_language']} dev refining '{state['project']}'. Update code based on all feedback. Address bugs, improve style, update instructions if needed.\nCode:\n{code_content}\nInstr:\n{instructions}\nUser Exec FB:\n{state.get('code_human_input','N/A')}\nSearch:\n{state.get('code_web_search_results','N/A')}\nAI Review:\n{state.get('code_feedback','N/A')}\nHuman Comments:\n{state.get('code_human_feedback','N/A')}\n---\nOutput ONLY JSON (GeneratedCode model)."
structured_llm = llm.with_structured_output(GeneratedCode) # Use LLM from state
response = structured_llm.invoke(prompt)
if not response or not isinstance(response, GeneratedCode) or not response.files:
logger.error("Code refinement failed or invalid format."); raise ValueError("Did not produce expected file structure.")
state["code_current"] = response
summary = f"Refined code - {len(response.files)} files. Instructions:\n{response.instructions[:200]}..."
state["messages"].append(AIMessage(content=f"Refined Code:\n{summary}"))
logger.info(f"Refined code, resulting in {len(response.files)} files.")
return state
# --- Code Review & Security Cycle ---
@with_retry
def code_review(state: MainState) -> MainState:
"""Performs code review on final_code_files."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
func_name = "code_review"
code_files_to_review = state.get("final_code_files", [])
if not code_files_to_review: logger.warning(f"No files in final_code_files for {func_name}"); state["code_review_current_feedback"] = "No code available."; state["messages"].append(AIMessage(content="Code Review: No code.")); return state
# --- CORRECTED LOOP ---
code_str_parts = []; total_len = 0; max_code_len = 25000
instructions = state.get("code_current", GeneratedCode(files=[], instructions="")).instructions
files_to_process = code_files_to_review
for file in files_to_process:
header = f"--- {file.filename} ---\n"; remaining_len = max_code_len - total_len - len(header)
if remaining_len <= 0: code_str_parts.append("\n*... (Code context truncated)*"); logger.debug(f"Code context truncated for {func_name}"); break
snippet = file.content[:remaining_len]; is_truncated = len(file.content) > remaining_len
code_str_parts.append(header + snippet + ('...' if is_truncated else '')); total_len += len(header) + len(snippet)
if total_len >= max_code_len:
if not code_str_parts[-1].endswith("truncated)*"): code_str_parts.append("\n*... (Code context truncated)*")
logger.debug(f"Code context max length for {func_name}"); break
code_content = "\n".join(code_str_parts)
# --- END CORRECTED LOOP ---
prompt = f"Perform detailed code review for '{state['project']}' ({state['coding_language']}). Focus on best practices, readability, logic, efficiency, robustness.\nCode:\n{code_content}\nInstr:\n{instructions}\n---\nProvide feedback."
response = llm.invoke(prompt) # Use LLM from state
feedback = response.content.strip()
state["code_review_current_feedback"] = feedback
state["messages"].append(AIMessage(content=f"Code Review:\n{feedback}"))
logger.info("Performed code review.")
return state
@with_retry
def security_check(state: MainState) -> MainState:
"""Performs security check on final_code_files."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
func_name = "security_check"
code_files_to_check = state.get("final_code_files", [])
if not code_files_to_check: logger.warning(f"No files in final_code_files for {func_name}"); state["security_current_feedback"] = "No code available."; state["messages"].append(AIMessage(content="Security Check: No code.")); return state
# --- CORRECTED LOOP ---
code_str_parts = []; total_len = 0; max_code_len = 25000
instructions = state.get("code_current", GeneratedCode(files=[], instructions="")).instructions
files_to_process = code_files_to_check
for file in files_to_process:
header = f"--- {file.filename} ---\n"; remaining_len = max_code_len - total_len - len(header)
if remaining_len <= 0: code_str_parts.append("\n*... (Code context truncated)*"); logger.debug(f"Code context truncated for {func_name}"); break
snippet = file.content[:remaining_len]; is_truncated = len(file.content) > remaining_len
code_str_parts.append(header + snippet + ('...' if is_truncated else '')); total_len += len(header) + len(snippet)
if total_len >= max_code_len:
if not code_str_parts[-1].endswith("truncated)*"): code_str_parts.append("\n*... (Code context truncated)*")
logger.debug(f"Code context max length for {func_name}"); break
code_content = "\n".join(code_str_parts)
# --- END CORRECTED LOOP ---
prompt = f"Act as security expert. Analyze {state['coding_language']} code for '{state['project']}'. Check for injection, XSS, auth issues, data exposure, input validation, misconfigs, vulnerable deps.\nCode:\n{code_content}\nInstr:\n{instructions}\n---\nProvide findings, impact, remediation."
response = llm.invoke(prompt) # Use LLM from state
feedback = response.content.strip()
state["security_current_feedback"] = feedback
state["messages"].append(AIMessage(content=f"Security Check:\n{feedback}"))
logger.info("Performed security check.")
return state
@with_retry
def refine_code_with_reviews(state: MainState) -> MainState:
"""Refines code based on review, security, and human feedback."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
func_name = "refine_code_with_reviews"
code_files_to_refine = state.get("final_code_files", [])
if not code_files_to_refine: logger.error(f"No files in final_code_files for {func_name}"); raise ValueError("No code available.")
instructions = state.get("code_current", GeneratedCode(files=[], instructions="")).instructions
# --- CORRECTED LOOP ---
code_str_parts = []; total_len = 0; max_code_len = 25000
files_to_process = code_files_to_refine
if not files_to_process: logger.warning(f"No files for {func_name}"); code_content = "No previous code."
else:
for file in files_to_process:
header = f"--- {file.filename} ---\n"; remaining_len = max_code_len - total_len - len(header)
if remaining_len <= 0: code_str_parts.append("\n*... (Code context truncated)*"); logger.debug(f"Code context truncated for {func_name}"); break
snippet = file.content[:remaining_len]; is_truncated = len(file.content) > remaining_len
code_str_parts.append(header + snippet + ('...' if is_truncated else '')); total_len += len(header) + len(snippet)
if total_len >= max_code_len:
if not code_str_parts[-1].endswith("truncated)*"): code_str_parts.append("\n*... (Code context truncated)*")
logger.debug(f"Code context max length for {func_name}"); break
code_content = "\n".join(code_str_parts)
# --- END CORRECTED LOOP ---
prompt = f"Refine {state['coding_language']} code for '{state['project']}'. Incorporate Code Review, Security Analysis, User Comments. Prioritize security/critical points. Update instructions if needed.\nCode:\n{code_content}\nInstr:\n{instructions}\nReview FB:\n{state.get('code_review_current_feedback', 'N/A')}\nSecurity FB:\n{state.get('security_current_feedback', 'N/A')}\nUser FB:\n{state.get('review_security_human_feedback', 'N/A')}\n---\nOutput ONLY JSON (GeneratedCode model)."
structured_llm = llm.with_structured_output(GeneratedCode) # Use LLM from state
response = structured_llm.invoke(prompt)
if not response or not isinstance(response, GeneratedCode) or not response.files:
logger.error("Code refinement post-review failed/invalid."); raise ValueError("Did not produce expected file structure.")
state["final_code_files"] = response.files; state["code_current"] = response
summary = f"Refined code ({len(response.files)} files) post-review."
state["messages"].append(AIMessage(content=f"Code Refined Post-Review:\n{summary}"))
logger.info(f"Refined code post-review, {len(response.files)} files.")
return state
# save_review_security_outputs remains unchanged
def save_review_security_outputs(state: MainState) -> MainState:
"""Saves review/security feedback and the corresponding code snapshot."""
state["final_code_review"] = state.get("code_review_current_feedback", "N/A")
state["final_security_issues"] = state.get("security_current_feedback", "N/A")
rs_dir, code_snap_dir = None, None # Initialize paths
try:
abs_project_folder = os.path.abspath(state["project_folder"])
rs_dir = os.path.join(abs_project_folder, "6_review_security")
os.makedirs(rs_dir, exist_ok=True)
code_snap_dir = os.path.join(rs_dir, "code_snapshot")
os.makedirs(code_snap_dir, exist_ok=True)
# Store paths in state
state["final_review_security_folder"] = rs_dir
state["review_code_snapshot_folder"] = code_snap_dir
# Save feedback files
review_path = os.path.join(rs_dir, "final_code_review.md")
security_path = os.path.join(rs_dir, "final_security_issues.md")
with open(review_path, "w", encoding="utf-8") as f: f.write(state["final_code_review"])
with open(security_path, "w", encoding="utf-8") as f: f.write(state["final_security_issues"])
logger.debug(f"Saved review feedback files to {rs_dir}")
# Save the code snapshot (should be the version just refined)
files_to_save = state.get("final_code_files", [])
instructions = state.get("code_current", GeneratedCode(files=[], instructions="")).instructions
if files_to_save:
logger.info(f"Saving {len(files_to_save)} code files to snapshot folder: {code_snap_dir}")
for file in files_to_save:
filename = file.filename; content = file.content
relative_path = filename.lstrip('/\\'); filepath = os.path.normpath(os.path.join(code_snap_dir, relative_path))
if not os.path.abspath(filepath).startswith(os.path.abspath(code_snap_dir)):
logger.warning(f"Attempted path traversal! Skipping file: {filename} -> {filepath}"); continue
try:
os.makedirs(os.path.dirname(filepath), exist_ok=True)
with open(filepath, "w", encoding="utf-8") as f: f.write(content)
logger.debug(f"Saved code file: {filepath}")
except OSError as path_err: logger.error(f"Could not create directory or save file '{filepath}': {path_err}")
except Exception as write_err: logger.error(f"Error writing file '{filepath}': {write_err}")
try: # Save instructions
instr_path = os.path.join(code_snap_dir, "instructions.md")
with open(instr_path, "w", encoding="utf-8") as f: f.write(instructions)
logger.debug(f"Saved instructions file: {instr_path}")
except Exception as instr_err: logger.error(f"Error writing instructions file: {instr_err}")
logger.info(f"Finished saving review/security outputs and code snapshot to {rs_dir}")
else: logger.warning("No code files found in 'final_code_files' to save for review snapshot.")
except Exception as e:
logger.error(f"General error in save_review_security_outputs: {e}", exc_info=True)
state["final_review_security_folder"] = None; state["review_code_snapshot_folder"] = None
return state
# --- Test Case Generation Cycle ---
@with_retry
def generate_initial_test_cases(state: MainState) -> MainState:
"""Generates initial test cases."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
func_name = "generate_initial_test_cases"
# --- RECOMMENDED: Use corrected loop ---
code_str_parts = []; total_len = 0; max_code_len = 25000
files_to_process = state.get("final_code_files", [])
if not files_to_process: logger.warning(f"No files for {func_name}"); code_str = "No code files provided."
else:
for file in files_to_process:
header = f"--- {file.filename} ---\n"; remaining_len = max_code_len - total_len - len(header)
if remaining_len <= 0: code_str_parts.append("\n*... (Code context truncated)*"); break
snippet = file.content[:remaining_len]; is_truncated = len(file.content) > remaining_len
code_str_parts.append(header + snippet + ('...' if is_truncated else '')); total_len += len(header) + len(snippet)
if total_len >= max_code_len:
if not code_str_parts[-1].endswith("truncated)*"): code_str_parts.append("\n*... (Code context truncated)*")
break
code_str = "\n".join(code_str_parts)
# --- END RECOMMENDED LOOP ---
if not state.get("final_code_files"): raise ValueError("No code found for test case generation.")
prompt = f"Generate >=3 diverse test cases (happy, edge, error) for '{state['project']}' ({state['coding_language']}). Base on stories, design, code.\nStories:\n{state.get('final_user_story', 'N/A')[:1000]}...\nDesign:\n{state.get('final_design_document', 'N/A')[:1000]}...\nCode:\n{code_str}\n---\nOutput ONLY JSON (TestCases model)."
structured_llm = llm.with_structured_output(TestCases) # Use LLM from state
response = structured_llm.invoke(prompt)
if not response or not isinstance(response, TestCases) or not response.test_cases:
logger.error("Test case gen failed/invalid."); raise ValueError("Did not produce valid test cases.")
state["test_cases_current"] = response.test_cases
summary = "\n".join([f"- {tc.description}" for tc in response.test_cases])
state["messages"].append(AIMessage(content=f"Generated Initial Test Cases:\n{summary}"))
logger.info(f"Generated {len(response.test_cases)} initial test cases.")
return state
@with_retry
def generate_test_cases_feedback(state: MainState) -> MainState:
"""Generates AI feedback on test cases."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
current_tests = state.get("test_cases_current", [])
if not current_tests: logger.warning("No test cases for feedback."); state["test_cases_feedback"] = "No tests found."; return state
tests_str = "\n".join([f"- {tc.description}: Input={tc.input_data}, Expected={tc.expected_output}" for tc in current_tests])
code_files = state.get("final_code_files", []); code_sample = code_files[0].content[:500] + '...' if code_files else "N/A"
prompt = f"Review test cases for '{state['project']}'. Assess coverage, clarity, effectiveness, realism. Suggest improvements.\nTests:\n{tests_str}\nStories (Context):\n{state.get('final_user_story', 'N/A')[:1000]}...\nCode (Context):\n{code_sample}\n---\nProvide feedback."
response = llm.invoke(prompt) # Use LLM from state
feedback = response.content.strip()
state["test_cases_feedback"] = feedback
state["messages"].append(AIMessage(content=f"Test Case Feedback:\n{feedback}"))
logger.info("Generated feedback on test cases.")
return state
@with_retry
def refine_test_cases_and_code(state: MainState) -> MainState:
"""Refines test cases and code based on feedback."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
func_name = "refine_test_cases_and_code"
current_tests = state.get("test_cases_current", []); current_code_files = state.get("final_code_files", [])
instructions = state.get("code_current", GeneratedCode(files=[], instructions="")).instructions
if not current_tests or not current_code_files: logger.error(f"Missing tests or code for {func_name}"); raise ValueError("Missing data.")
tests_str = "\n".join([f"- {tc.description}: Input={tc.input_data}, Expected={tc.expected_output}" for tc in current_tests])
# --- CORRECTED LOOP ---
code_str_parts = []; total_len = 0; max_code_len = 25000
files_to_process = current_code_files
if not files_to_process: logger.warning(f"No files for {func_name}"); code_str = "No code."
else:
for file in files_to_process:
header = f"--- {file.filename} ---\n"; remaining_len = max_code_len - total_len - len(header)
if remaining_len <= 0: code_str_parts.append("\n*... (Code context truncated)*"); logger.debug(f"Code context truncated for {func_name}"); break
snippet = file.content[:remaining_len]; is_truncated = len(file.content) > remaining_len
code_str_parts.append(header + snippet + ('...' if is_truncated else '')); total_len += len(header) + len(snippet)
if total_len >= max_code_len:
if not code_str_parts[-1].endswith("truncated)*"): code_str_parts.append("\n*... (Code context truncated)*")
logger.debug(f"Code context max length for {func_name}"); break
code_str = "\n".join(code_str_parts)
# --- END CORRECTED LOOP ---
class TestAndCode(BaseModel):
test_cases: List[TestCase]; files: List[CodeFile]
prompt = f"Tests failed for '{state['project']}'. Refine BOTH tests AND code based on feedback. Goal: refined code passes refined tests.\nTests:\n{tests_str}\nCode:\n{code_str}\nInstr:\n{instructions}\nAI Test FB:\n{state.get('test_cases_feedback','N/A')}\nHuman FB/Results:\n{state.get('test_cases_human_feedback','N/A')}\n---\nOutput ONLY JSON (TestAndCode model)."
structured_llm = llm.with_structured_output(TestAndCode) # Use LLM from state
response = structured_llm.invoke(prompt)
if not response or not isinstance(response, TestAndCode) or not response.test_cases or not response.files:
logger.error("Refinement of tests/code failed/invalid."); raise ValueError("Did not produce expected results.")
state["test_cases_current"] = response.test_cases; state["final_code_files"] = response.files
state["code_current"] = GeneratedCode(files=response.files, instructions=instructions) # Keep old instructions
summary = f"Refined {len(response.files)} code files & {len(response.test_cases)} tests."
state["messages"].append(AIMessage(content=f"Refined Tests and Code:\n{summary}"))
logger.info("Refined test cases and code.")
return state
# save_testing_outputs remains unchanged
def save_testing_outputs(state: MainState) -> MainState:
"""Saves the final tests and the code version that passed them."""
state["final_test_code_files"] = state.get("final_code_files", [])
final_tests = state.get("test_cases_current", [])
test_dir, code_snap_dir = None, None
try:
abs_project_folder = os.path.abspath(state["project_folder"])
test_dir = os.path.join(abs_project_folder, "7_testing"); os.makedirs(test_dir, exist_ok=True)
code_snap_dir = os.path.join(test_dir, "passed_code"); os.makedirs(code_snap_dir, exist_ok=True)
state["final_testing_folder"] = test_dir; state["testing_passed_code_folder"] = code_snap_dir
# Save test cases file
tc_path = os.path.join(test_dir, "final_test_cases.md")
tc_str = "\n\n".join([f"**{tc.description}**\nInput:`{tc.input_data}`\nExpected:`{tc.expected_output}`" for tc in final_tests])
with open(tc_path, "w", encoding="utf-8") as f: f.write(f"# Final Test Cases ({len(final_tests)} Passed)\n\n{tc_str}")
logger.debug(f"Saved test cases file: {tc_path}")
# Save the code snapshot that passed
passed_code_files = state.get("final_test_code_files",[]);
instructions = state.get("code_current", GeneratedCode(files=[],instructions="")).instructions
if passed_code_files:
logger.info(f"Saving {len(passed_code_files)} passed code files to snapshot: {code_snap_dir}")
for file in passed_code_files: # Save files with path safety
fn=file.filename; content=file.content; safe_fn=os.path.basename(fn)
if not safe_fn or ('/' in fn and '..' in fn) or ('\\' in fn and '..' in fn): logger.warning(f"Skip unsafe file: {fn}"); continue
rel_path=fn.lstrip('/\\'); filepath=os.path.normpath(os.path.join(code_snap_dir, rel_path))
if not os.path.abspath(filepath).startswith(os.path.abspath(code_snap_dir)): logger.warning(f"Skip traversal: {fn}"); continue
try:
os.makedirs(os.path.dirname(filepath), exist_ok=True);
with open(filepath, "w", encoding="utf-8") as f: f.write(content)
logger.debug(f"Saved code file: {filepath}")
except OSError as path_err: logger.error(f"Path error saving '{filepath}': {path_err}")
except Exception as write_err: logger.error(f"Error writing '{filepath}': {write_err}")
try: # Save instructions
instr_path = os.path.join(code_snap_dir, "instructions.md")
with open(instr_path,"w",encoding="utf-8") as f: f.write(instructions)
logger.debug(f"Saved instructions: {instr_path}")
except Exception as instr_err: logger.error(f"Error writing instructions: {instr_err}")
logger.info(f"Finished saving testing outputs and passed code to {test_dir}")
else: logger.warning("No passed code files found in state to save.")
except Exception as e: logger.error(f"Failed save testing outputs: {e}", exc_info=True); state["final_testing_folder"]=None; state["testing_passed_code_folder"]=None
return state
# --- Quality Analysis Cycle ---
@with_retry
def generate_initial_quality_analysis(state: MainState) -> MainState:
"""Generates an overall quality analysis report."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
func_name = "generate_initial_quality_analysis"
code_files_passed = state.get("final_test_code_files", [])
instructions = state.get("code_current", GeneratedCode(files=[], instructions="")).instructions
if not code_files_passed: logger.warning(f"No tested code for {func_name}."); state["quality_current_analysis"] = "No passed code available."; return state
# --- CORRECTED LOOP ---
code_str_parts = []; total_len = 0; max_code_len = 25000
files_to_process = code_files_passed
if not files_to_process: logger.error(f"Logic error: files_to_process empty in {func_name}"); code_str = "Error retrieving code."
else:
for file in files_to_process:
header = f"--- {file.filename} ---\n"; remaining_len = max_code_len - total_len - len(header)
if remaining_len <= 0: code_str_parts.append("\n*... (Code context truncated)*"); logger.debug(f"Code context truncated for {func_name}"); break
snippet = file.content[:remaining_len]; is_truncated = len(file.content) > remaining_len
code_str_parts.append(header + snippet + ('...' if is_truncated else '')); total_len += len(header) + len(snippet)
if total_len >= max_code_len:
if not code_str_parts[-1].endswith("truncated)*"): code_str_parts.append("\n*... (Code context truncated)*")
logger.debug(f"Code context max length for {func_name}"); break
code_str = "\n".join(code_str_parts)
# --- END CORRECTED LOOP ---
tests_str = "\n".join([f"- {tc.description}" for tc in state.get("test_cases_current", [])])[:500] + "..."
prompt = f"Generate QA report for '{state['project']}' ({state['coding_language']}). Code passed tests. Assess Maintainability, Perf, Scale, Security, Coverage, Docs, Confidence Score (1-10).\nCode:\n{code_str}\nTests:\n{tests_str}\nInstr:\n{instructions}\nReview Sum:\n{state.get('final_code_review','N/A')[:500]}...\nSecurity Sum:\n{state.get('final_security_issues','N/A')[:500]}...\n---"
response = llm.invoke(prompt) # Use LLM from state
qa_report = response.content.strip()
state["quality_current_analysis"] = qa_report
state["messages"].append(AIMessage(content=f"Initial Quality Analysis Report:\n{qa_report}"))
logger.info("Generated Initial Quality Analysis Report.")
return state
@with_retry
def generate_quality_feedback(state: MainState) -> MainState:
"""Generates AI feedback on the QA report."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
current_qa_report = state.get('quality_current_analysis', 'N/A')
if current_qa_report == 'N/A': logger.warning("No QA report for feedback."); state["quality_feedback"] = "No QA report."; return state
prompt = f"Review QA report for '{state['project']}'. Critique fairness, comprehensiveness, logic, missing aspects.\nReport:\n{current_qa_report}"
response = llm.invoke(prompt) # Use LLM from state
feedback = response.content.strip()
state["quality_feedback"] = feedback
state["messages"].append(AIMessage(content=f"Feedback on QA Report:\n{feedback}"))
logger.info("Generated feedback on the Quality Analysis report.")
return state
@with_retry
def refine_quality_and_code(state: MainState) -> MainState:
"""Refines QA report and potentially minor code aspects."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
func_name = "refine_quality_and_code"
code_files_base = state.get("final_test_code_files", [])
instructions = state.get("code_current", GeneratedCode(files=[], instructions="")).instructions
# --- CORRECTED LOOP ---
code_str_parts = []; total_len = 0; max_code_len = 25000
files_to_process = code_files_base
if not files_to_process: logger.warning(f"No tested code for {func_name}"); code_content = "N/A"
else:
for file in files_to_process:
header = f"--- {file.filename} ---\n"; remaining_len = max_code_len - total_len - len(header)
if remaining_len <= 0: code_str_parts.append("\n*... (Code context truncated)*"); logger.debug(f"Code context truncated for {func_name}"); break
snippet = file.content[:remaining_len]; is_truncated = len(file.content) > remaining_len
code_str_parts.append(header + snippet + ('...' if is_truncated else '')); total_len += len(header) + len(snippet)
if total_len >= max_code_len:
if not code_str_parts[-1].endswith("truncated)*"): code_str_parts.append("\n*... (Code context truncated)*")
logger.debug(f"Code context max length for {func_name}"); break
code_content = "\n".join(code_str_parts)
# --- END CORRECTED LOOP ---
class QualityAndCode(BaseModel):
analysis: str; files: List[CodeFile]
prompt = f"Refine QA report for '{state['project']}' based on feedback. Also apply *minor, non-functional* code improvements (docs, names) suggested by feedback to 'Passed Code' if simple, else return original files.\nQA Report:\n{state.get('quality_current_analysis','N/A')}\nPassed Code:\n{code_content}\nInstr:\n{instructions}\nAI FB:\n{state.get('quality_feedback','N/A')}\nHuman FB:\n{state.get('quality_human_feedback','N/A')}\n---\nOutput ONLY JSON (QualityAndCode model)."
structured_llm = llm.with_structured_output(QualityAndCode) # Use LLM from state
response = structured_llm.invoke(prompt)
if not response or not isinstance(response, QualityAndCode) or not response.analysis:
logger.error("Refinement of QA report failed/invalid."); raise ValueError("Did not produce expected result.")
state["quality_current_analysis"] = response.analysis; state["final_code_files"] = response.files
current_instructions = state.get("code_current", GeneratedCode(files=[],instructions="")).instructions
state["code_current"] = GeneratedCode(files=response.files, instructions=current_instructions)
state["messages"].append(AIMessage(content=f"Refined Quality Analysis Report:\n{state['quality_current_analysis']}"))
logger.info("Refined Quality Analysis report.")
return state
# save_final_quality_analysis remains unchanged
def save_final_quality_analysis(state: MainState) -> MainState:
"""Saves the final QA report and the associated final code snapshot."""
state["final_quality_analysis"] = state.get("quality_current_analysis", "N/A")
qa_dir, code_snap_dir, qa_path = None, None, None
try:
abs_project_folder = os.path.abspath(state["project_folder"])
qa_dir = os.path.join(abs_project_folder, "8_quality_analysis"); os.makedirs(qa_dir, exist_ok=True)
qa_path = os.path.join(qa_dir, "final_quality_analysis.md")
with open(qa_path, "w", encoding="utf-8") as f: f.write(state["final_quality_analysis"])
state["final_quality_analysis_path"] = qa_path; logger.info(f"Saved final QA report: {qa_path}")
code_snap_dir = os.path.join(qa_dir, "final_code"); os.makedirs(code_snap_dir, exist_ok=True)
state["final_code_folder"] = code_snap_dir
files_to_save = state.get("final_code_files",[]); instructions = state.get("code_current", GeneratedCode(files=[],instructions="")).instructions
if files_to_save:
logger.info(f"Saving final code snapshot ({len(files_to_save)} files) to {code_snap_dir}")
for file in files_to_save:
fn=file.filename; content=file.content; safe_fn=os.path.basename(fn)
if not safe_fn or ('/' in fn and '..' in fn) or ('\\' in fn and '..' in fn): logger.warning(f"Skip unsafe file: {fn}"); continue
rel_path=fn.lstrip('/\\'); filepath=os.path.normpath(os.path.join(code_snap_dir, rel_path))
if not os.path.abspath(filepath).startswith(os.path.abspath(code_snap_dir)): logger.warning(f"Skip traversal: {fn}"); continue
try:
os.makedirs(os.path.dirname(filepath), exist_ok=True);
with open(filepath, "w", encoding="utf-8") as f: f.write(content)
logger.debug(f"Saved final code file: {filepath}")
except OSError as path_err: logger.error(f"Path error saving final code '{filepath}': {path_err}")
except Exception as write_err: logger.error(f"Error writing final code '{filepath}': {write_err}")
try: # Save instructions
instr_path = os.path.join(code_snap_dir, "instructions.md")
with open(instr_path,"w",encoding="utf-8") as f: f.write(instructions)
logger.debug(f"Saved final instructions: {instr_path}")
except Exception as instr_err: logger.error(f"Error writing final instructions: {instr_err}")
else: logger.warning("No final code files found to save with QA report.")
except Exception as e:
logger.error(f"Failed saving QA outputs: {e}", exc_info=True);
state["final_quality_analysis_path"]=None; state["final_code_folder"]=None
return state
# --- Deployment Cycle ---
@with_retry
def generate_initial_deployment(state: MainState, prefs: str) -> MainState:
"""Generates initial deployment plan."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
func_name = "generate_initial_deployment"
final_code = state.get("final_code_files", [])
if not final_code: logger.error(f"No final code for {func_name}"); raise ValueError("Final code missing.")
instructions = state.get("code_current", GeneratedCode(files=[], instructions="")).instructions
# --- CORRECTED LOOP ---
code_str_parts = []; total_len = 0; max_code_len = 25000
files_to_process = final_code
if not files_to_process: logger.warning(f"No files for {func_name}"); code_context = "No code files."
else:
for file in files_to_process:
is_key_file = ("requirements" in file.filename.lower() or "dockerfile" in file.filename.lower() or "main." in file.filename.lower() or "app." in file.filename.lower() or ".env" in file.filename.lower() or "config" in file.filename.lower())
if is_key_file:
header = f"--- {file.filename} ---\n"; remaining_len = max_code_len - total_len - len(header)
if remaining_len <= 0: code_str_parts.append("\n*... (Key file context truncated)*"); logger.debug(f"Key file context truncated for {func_name}"); break
snippet = file.content[:remaining_len]; is_truncated = len(file.content) > remaining_len
code_str_parts.append(header + snippet + ('...' if is_truncated else '')); total_len += len(header) + len(snippet)
if total_len >= max_code_len:
if not code_str_parts[-1].endswith("truncated)*"): code_str_parts.append("\n*... (Key file context truncated)*")
logger.debug(f"Key file context max length for {func_name}"); break
code_context = "\n".join(code_str_parts) if code_str_parts else "No key deployment files found."
# --- END CORRECTED LOOP ---
prompt = f"Act as DevOps. Generate detailed deployment plan for '{state['project']}' ({state['coding_language']}). Base on user prefs, code structure (reqs, docker). Include commands, examples, verification steps.\nPrefs:\n{prefs}\nCode Context (Key Files):\n{code_context}\nInstr:\n{instructions}\n---"
response = llm.invoke(prompt) # Use LLM from state
deployment_plan = response.content.strip()
state["deployment_current_process"] = deployment_plan
state["messages"].append(AIMessage(content=f"Initial Deployment Plan:\n{deployment_plan}"))
logger.info("Generated initial deployment plan.")
return state
@with_retry
def generate_deployment_feedback(state: MainState) -> MainState:
"""Generates AI feedback on deployment plan."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
current_plan = state.get('deployment_current_process', 'N/A')
if current_plan == 'N/A': logger.warning("No deploy plan to review."); state["deployment_feedback"] = "No plan."; return state
prompt = f"Review Deployment Plan for '{state['project']}'. Assess clarity, correctness, completeness, security, alignment with practices.\nPlan:\n{current_plan}\n---\nSuggest improvements."
response = llm.invoke(prompt) # Use LLM from state
feedback = response.content.strip()
state["deployment_feedback"] = feedback
state["messages"].append(AIMessage(content=f"Deployment Plan Feedback:\n{feedback}"))
logger.info("Generated feedback on deployment plan.")
return state
@with_retry
def refine_deployment(state: MainState) -> MainState:
"""Refines deployment plan based on feedback."""
llm = state.get('llm_instance')
if not llm: raise ConnectionError("LLM instance not found in state.")
if 'messages' not in state: state['messages'] = []
func_name = "refine_deployment"
current_plan = state.get('deployment_current_process', 'N/A'); ai_feedback = state.get('deployment_feedback', 'N/A'); human_feedback = state.get('deployment_human_feedback', 'N/A')
# --- ADDED LOOP ---
code_str_parts = []; total_len = 0; max_code_len = 25000
final_code = state.get("final_code_files", []); instructions = state.get("code_current", GeneratedCode(files=[], instructions="")).instructions
files_to_process = final_code
if not files_to_process: logger.warning(f"No files for {func_name}"); code_context = "No code files."
else:
for file in files_to_process:
is_key_file = ("requirements" in file.filename.lower() or "dockerfile" in file.filename.lower() or "main." in file.filename.lower() or "app." in file.filename.lower() or ".env" in file.filename.lower() or "config" in file.filename.lower())
if is_key_file:
header = f"--- {file.filename} ---\n"; remaining_len = max_code_len - total_len - len(header)
if remaining_len <= 0: code_str_parts.append("\n*... (Key file context truncated)*"); logger.debug(f"Key file context truncated for {func_name}"); break
snippet = file.content[:remaining_len]; is_truncated = len(file.content) > remaining_len
code_str_parts.append(header + snippet + ('...' if is_truncated else '')); total_len += len(header) + len(snippet)
if total_len >= max_code_len:
if not code_str_parts[-1].endswith("truncated)*"): code_str_parts.append("\n*... (Key file context truncated)*")
logger.debug(f"Key file context max length for {func_name}"); break
code_context = "\n".join(code_str_parts) if code_str_parts else "No key files."
# --- END ADDED LOOP ---
prompt = f"Refine deployment plan for '{state['project']}'. Update based on feedback.\nCurrent Plan:\n{current_plan}\nCode Context:\n{code_context}\nInstr:\n{instructions}\nAI FB:\n{ai_feedback}\nHuman FB:\n{human_feedback}\n---\nGenerate updated plan."
response = llm.invoke(prompt) # Use LLM from state
refined_plan = response.content.strip()
state["deployment_current_process"] = refined_plan
state["messages"].append(AIMessage(content=f"Refined Deployment Plan:\n{refined_plan}"))
logger.info("Refined deployment plan.")
return state
# save_final_deployment_plan remains unchanged
def save_final_deployment_plan(state: MainState) -> MainState:
"""Saves the final deployment plan."""
state["final_deployment_process"] = state.get("deployment_current_process", "No deployment plan generated.")
filepath = None
try:
abs_project_folder = os.path.abspath(state["project_folder"])
deploy_dir = os.path.join(abs_project_folder, "9_deployment"); os.makedirs(deploy_dir, exist_ok=True)
filepath = os.path.join(deploy_dir, "final_deployment_plan.md")
with open(filepath, "w", encoding="utf-8") as f: f.write(state["final_deployment_process"])
logger.info(f"Saved final deployment plan: {filepath}")
except Exception as e: logger.error(f"Failed save deployment plan: {e}", exc_info=True); filepath=None
state["final_deployment_path"] = filepath
return state
# --- END OF SDLC.py ---
|