# app.py """ Streamlit frontend application for orchestrating an AI-driven SDLC workflow. This application manages the user interface, state transitions, and calls backend logic functions defined in SDLC.py to generate project artifacts. Includes cycle-based chat history display. """ # --- Standard Library Imports --- import streamlit as st import os import shutil import logging from datetime import datetime import time import zipfile # Standard library zipfile # --- Third-party Imports --- import pydantic_core # For specific error checking # --- Import core logic from SDLC.py --- try: import SDLC from SDLC import ( # State and Models MainState, GeneratedCode, PlantUMLCode, TestCase, CodeFile, TestCases, # Initialization function initialize_llm_clients, # Workflow Functions (Import all necessary functions) generate_questions, refine_prompt, generate_initial_user_stories, generate_user_story_feedback, refine_user_stories, save_final_user_story, generate_initial_product_review, generate_product_review_feedback, refine_product_review, save_final_product_review, generate_initial_design_doc, generate_design_doc_feedback, refine_design_doc, save_final_design_doc, select_uml_diagrams, generate_initial_uml_codes, generate_uml_feedback, refine_uml_codes, save_final_uml_diagrams, generate_initial_code, web_search_code, generate_code_feedback, refine_code, code_review, security_check, refine_code_with_reviews, save_review_security_outputs, generate_initial_test_cases, generate_test_cases_feedback, refine_test_cases_and_code, save_testing_outputs, generate_initial_quality_analysis, generate_quality_feedback, refine_quality_and_code, save_final_quality_analysis, generate_initial_deployment, generate_deployment_feedback, refine_deployment, save_final_deployment_plan, # Message Types HumanMessage, AIMessage ) logging.info("Successfully imported components from SDLC.py.") except ImportError as e: st.error(f"Import Error: {e}. Critical file 'SDLC.py' not found or contains errors.") logging.critical(f"Failed to import SDLC.py: {e}", exc_info=True) st.stop() except Exception as e: st.error(f"An unexpected error occurred during import from SDLC: {e}") logging.critical(f"Unexpected error during import from SDLC: {e}", exc_info=True) st.stop() # --- Application Setup --- st.set_page_config(layout="wide", page_title="AI SDLC Workflow") logger = logging.getLogger(__name__) # Ensure logger is configured if not logger.handlers: logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger.info("Streamlit app logger configured.") # --- Constants for Configuration --- # Define available providers and their models AVAILABLE_MODELS = { "Google": [ "gemini-2.0-flash", "gemini-1.5-pro-latest", "gemini-1.5-flash-latest", "gemini-1.0-pro", "gemini-1.0-flash", "gemini-2.5-pro-exp-03-25", ], "OpenAI": [ "gpt-4o-mini", "gpt-4o-mini-2024-07-18", "gpt-4o", "gpt-4o-2024-08-06", "o1-mini", "o1-mini-2024-09-12", "o3-mini", "o3-mini-2025-01-31", ], "Groq": [ "llama3-8b-8192", "llama3-70b-8192", "llama-3.1-8b-instant", "llama-3.2-1b-preview", "llama-3.2-3b-preview", "llama-3.3-70b-specdec", "llama-3.3-70b-versatile", "mistral-saba-24b", "gemma2-9b-it", "deepseek-r1-distill-llama-70b", "deepseek-r1-distill-qwen-32b", "qwen-2.5-32b", "qwen-2.5-coder-32b", "qwen-qwq-32b", "mixtral-8x7b-32768", ], "Anthropic": [ "claude-3-opus-20240229", "claude-3-sonnet-20240229", "claude-3-haiku-20240307", "claude-3-5-haiku-latest", "claude-3-5-sonnet-latest", "claude-3-7-sonnet-latest" ], "xAI": [ "grok-1", "grok-2-latest", "grok-3", "grok-3-mini" ] } LLM_PROVIDERS = list(AVAILABLE_MODELS.keys()) # --- Define Cycle Order and Stage-to-Cycle Mapping --- CYCLE_ORDER = [ "Requirements", "User Story", "Product Review", "Design", "UML", "Code Generation", "Review & Security", "Testing", "Quality Analysis", "Deployment" ] STAGE_TO_CYCLE = { "initial_setup": "Requirements", "run_generate_questions": "Requirements", "collect_answers": "Requirements", "run_refine_prompt": "Requirements", "run_generate_initial_user_stories": "User Story", "run_generate_user_story_feedback": "User Story", "collect_user_story_human_feedback": "User Story", "run_refine_user_stories": "User Story", "collect_user_story_decision": "User Story", "run_generate_initial_product_review": "Product Review", "run_generate_product_review_feedback": "Product Review", "collect_product_review_human_feedback": "Product Review", "run_refine_product_review": "Product Review", "collect_product_review_decision": "Product Review", "run_generate_initial_design_doc": "Design", "run_generate_design_doc_feedback": "Design", "collect_design_doc_human_feedback": "Design", "run_refine_design_doc": "Design", "collect_design_doc_decision": "Design", "run_select_uml_diagrams": "UML", "run_generate_initial_uml_codes": "UML", "run_generate_uml_feedback": "UML", "collect_uml_human_feedback": "UML", "run_refine_uml_codes": "UML", "collect_uml_decision": "UML", "run_generate_initial_code": "Code Generation", "collect_code_human_input": "Code Generation", "run_web_search_code": "Code Generation", "run_generate_code_feedback": "Code Generation", "collect_code_human_feedback": "Code Generation", "run_refine_code": "Code Generation", "collect_code_decision": "Code Generation", "run_code_review": "Review & Security", "run_security_check": "Review & Security", "merge_review_security_feedback": "Review & Security", # Stage name from prompt "collect_review_security_human_feedback": "Review & Security", # Hypothetical, check if needed "run_refine_code_with_reviews": "Review & Security", "collect_review_security_decision": "Review & Security", "run_generate_initial_test_cases": "Testing", "run_generate_test_cases_feedback": "Testing", "collect_test_cases_human_feedback": "Testing", "run_refine_test_cases_and_code": "Testing", "run_save_testing_outputs": "Testing", "run_generate_initial_quality_analysis": "Quality Analysis", "run_generate_quality_feedback": "Quality Analysis", "collect_quality_human_feedback": "Quality Analysis", "run_refine_quality_and_code": "Quality Analysis", "collect_quality_decision": "Quality Analysis", "generate_initial_deployment": "Deployment", # Stage for form display "run_generate_initial_deployment": "Deployment", # Stage for processing "run_generate_deployment_feedback": "Deployment", "collect_deployment_human_feedback": "Deployment", "run_refine_deployment": "Deployment", "collect_deployment_decision": "Deployment", "END": "END" # Final stage marker } # --- Helper Functions --- def initialize_state(): """Initializes or resets the Streamlit session state.""" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") default_project_folder = f"ai_sdlc_project_{timestamp}" # --- Existing Clear and Basic Init --- st.session_state.clear() # Clear all session state keys st.session_state.stage = "initial_setup" st.session_state.workflow_state = {} # Master state dictionary st.session_state.user_input = "" # Temporary storage for text area st.session_state.display_content = "Welcome! Please configure API keys and project details to start." # Main display area content st.session_state.project_folder_base = default_project_folder # Base folder name default st.session_state.current_prefs = "" # For deployment preferences # ZIP file paths for download buttons st.session_state.zip_path = None # Full project zip st.session_state.review_code_zip_path = None st.session_state.testing_code_zip_path = None st.session_state.final_code_zip_path = None # Configuration state st.session_state.config_applied = False st.session_state.selected_provider = LLM_PROVIDERS[0] st.session_state.selected_model = AVAILABLE_MODELS[LLM_PROVIDERS[0]][0] st.session_state.llm_api_key = "" st.session_state.tavily_api_key = "" st.session_state.llm_instance = None st.session_state.tavily_instance = None # Chat history state for current cycle display st.session_state.current_cycle_messages = [] # List to hold messages for display in the current cycle st.session_state.previous_major_cycle = None # Track the previous cycle to detect changes # --- >>> ADDED: Initialize Form Default Keys Directly Here <<< --- # This ensures the keys exist when the initial setup form is rendered. st.session_state.proj_name_default = "Multi-feature Web Application Example\n- User Authentication\n- Task Management\n- Reporting" st.session_state.proj_cat_default = "Web Development\n- Full Stack" st.session_state.proj_subcat_default = "Productivity Tool\n- Internal Business Application" st.session_state.proj_lang_default = "Python (Flask Backend)\nJavaScript (React Frontend)\nDocker" st.session_state.min_iter_default = 2 # --- >>> END ADDED BLOCK <<< --- # --- Existing Initialization for MD/PDF Paths --- st.session_state.refined_prompt_path = None st.session_state.refined_prompt_pdf_path = None st.session_state.final_user_story_path = None st.session_state.final_user_story_pdf_path = None st.session_state.final_product_review_path = None st.session_state.final_product_review_pdf_path = None st.session_state.final_design_document_path = None st.session_state.final_design_document_pdf_path = None st.session_state.final_quality_analysis_path = None st.session_state.final_quality_analysis_pdf_path = None st.session_state.final_deployment_path = None st.session_state.final_deployment_pdf_path = None # --- END ADDED --- # This comment was slightly misplaced, path init is correct # --- Existing Initialization for Snapshot Paths --- st.session_state.snapshot_path_codegen_initial = None st.session_state.snapshot_path_codegen_refined = None st.session_state.snapshot_path_review_refined = None st.session_state.snapshot_path_testing_refined = None st.session_state.snapshot_path_qa_polished = None # Keep final folder paths (might point to last snapshot or dedicated folder) st.session_state.review_code_snapshot_folder = None # Points to post_review snapshot st.session_state.testing_passed_code_folder = None # Points to snapshot saved by save_testing_outputs st.session_state.final_code_folder = None # Points to post_qa snapshot # --- END ADDED/MODIFIED --- # This comment was slightly misplaced, path init is correct logger.info("Streamlit session state initialized/reset including form defaults, PDF, and Snapshot paths.") # Keep the original log message or update if desired def update_display(new_content: str): """Updates the main display area content in the session state.""" st.session_state.display_content = new_content logger.debug("Main display content updated.") def create_download_button(file_path: str, label: str, mime: str, key_suffix: str, help_text: str = ""): """Creates a download button for a given file path if it exists and is valid.""" if not file_path or not isinstance(file_path, str): # logger.debug(f"Download button skipped for '{label}': Invalid path ({file_path}).") return # Skip if path is invalid abs_file_path = os.path.abspath(file_path) if os.path.exists(abs_file_path) and os.path.isfile(abs_file_path): try: with open(abs_file_path, "rb") as fp: # Sanitize label for key generation, keep it simple safe_label_part = "".join(c for c in label if c.isalnum() or c in ['_']).lower()[:15] button_key = f"dl_btn_{key_suffix}_{safe_label_part}" # Unique key per button st.download_button( label=f"Download {label}", data=fp, file_name=os.path.basename(abs_file_path), mime=mime, key=button_key, help=help_text or f"Download the {label} file." ) except FileNotFoundError: # This shouldn't happen if os.path.exists passed, but handle defensively logger.warning(f"File disappeared before download button creation: {abs_file_path}") except Exception as e: logger.error(f"Error preparing download button for '{abs_file_path}': {e}", exc_info=True) # Show a less intrusive warning in the UI st.warning(f"Could not create download for {label}. Error: {e}", icon="⚠️") # else: logger.debug(f"Download button skipped for '{label}': File not found or not a file ({abs_file_path}).") def create_zip_and_download_button(folder_path_key: str, zip_path_key: str, zip_basename: str, button_label_prefix: str, sidebar_context): """ Creates a button to generate a ZIP archive of a specified folder and provides a download button for the generated ZIP file. Args: folder_path_key: Key in workflow_state holding the path to the folder to zip. zip_path_key: Key in session_state where the path to the created zip file will be stored. zip_basename: The base name for the output zip file (without .zip). button_label_prefix: Prefix for the button labels (e.g., "Review Stage Code"). sidebar_context: The Streamlit container (e.g., st.sidebar) where buttons are placed. """ folder_path = st.session_state.workflow_state.get(folder_path_key) abs_folder_path = os.path.abspath(folder_path) if folder_path and isinstance(folder_path, str) else None if abs_folder_path and os.path.exists(abs_folder_path) and os.path.isdir(abs_folder_path): # --- Button to Generate ZIP --- zip_label = f"Generate & Download {button_label_prefix} ZIP" existing_zip = st.session_state.get(zip_path_key) if existing_zip and os.path.exists(existing_zip): zip_label = f"Download {button_label_prefix} ZIP" # Change label if ZIP exists # Use a descriptive and unique key for the generation button zip_gen_key = f"zip_gen_btn_{zip_path_key}" if sidebar_context.button(zip_label, key=zip_gen_key, help=f"Package the {button_label_prefix} folder into a downloadable ZIP file."): with st.spinner(f"Creating {button_label_prefix} archive..."): try: # Define output directory (same level as project folder) and base name out_dir = os.path.dirname(abs_folder_path) # Place zip next to the folder being zipped archive_base = os.path.join(out_dir, zip_basename) # e.g., ../ai_sdlc_project_xxx/code_snapshot_review # Define the root directory and the directory to archive relative to the root root_dir = os.path.dirname(abs_folder_path) # The parent directory of the folder to zip base_dir = os.path.basename(abs_folder_path) # The name of the folder to zip logger.info(f"Zipping: base_name='{archive_base}', format='zip', root_dir='{root_dir}', base_dir='{base_dir}'") # Construct the expected output zip file path zip_file_path = archive_base + ".zip" # Remove old zip file if it exists to avoid conflicts if os.path.exists(zip_file_path): try: os.remove(zip_file_path) logger.info(f"Removed existing ZIP: {zip_file_path}") except Exception as del_e: logger.warning(f"Could not remove existing ZIP {zip_file_path}: {del_e}") # Create the archive archive_path = shutil.make_archive( base_name=archive_base, format='zip', root_dir=root_dir, base_dir=base_dir ) # Verify the archive was created if not os.path.exists(archive_path): raise OSError(f"ZIP archive creation failed: File not found at {archive_path}") # Store the path to the created zip file in session state st.session_state[zip_path_key] = archive_path st.success(f"{button_label_prefix} ZIP created successfully!") logger.info(f"Successfully created ZIP archive: {archive_path}") st.rerun() # Rerun to update the UI and show the download button except Exception as e: sidebar_context.error(f"ZIP Creation Error: {e}") logger.error(f"ZIP creation failed for folder '{abs_folder_path}': {e}", exc_info=True) # --- Download Button for Existing ZIP --- generated_zip = st.session_state.get(zip_path_key) if generated_zip and os.path.exists(generated_zip): try: with open(generated_zip, "rb") as fp: # Use a descriptive and unique key for the download button safe_prefix = "".join(c for c in button_label_prefix if c.isalnum()).lower()[:10] dl_key = f"dl_zip_btn_{zip_path_key}_{safe_prefix}" sidebar_context.download_button( label=f"Download {button_label_prefix} ZIP", data=fp, file_name=os.path.basename(generated_zip), mime="application/zip", key=dl_key, help=f"Download the generated {button_label_prefix} ZIP archive." ) except Exception as e: sidebar_context.warning(f"Error reading ZIP file for download: {e}") logger.error(f"Error reading ZIP file {generated_zip} for download: {e}", exc_info=True) # else: logger.debug(f"ZIP button skipped for '{button_label_prefix}': Folder path invalid or not found ({folder_path}).") # --- Initialize State if First Run --- if 'stage' not in st.session_state: initialize_state() # --- Sidebar UI --- with st.sidebar: st.header("AI SDLC Orchestrator") st.caption("Automated workflow from requirements to deployment.") st.divider() # --- Configuration Expander --- with st.expander("Configuration", expanded=not st.session_state.get('config_applied', False)): st.subheader("LLM & API Keys") # LLM Provider Selection selected_provider = st.selectbox( "Select LLM Provider", options=LLM_PROVIDERS, key="selected_provider", # Keep existing key for state consistency index=LLM_PROVIDERS.index(st.session_state.selected_provider) if st.session_state.selected_provider in LLM_PROVIDERS else 0, help="Choose the primary Large Language Model provider." ) # Dynamically update available models based on provider available_models = AVAILABLE_MODELS.get(selected_provider, ["N/A"]) current_model_selection = st.session_state.selected_model model_index = available_models.index(current_model_selection) if current_model_selection in available_models else 0 selected_model = st.selectbox( f"Select Model ({selected_provider})", options=available_models, key="selected_model", # Keep existing key index=model_index, help=f"Choose a specific model from {selected_provider}." ) # API Key Inputs llm_api_key_input = st.text_input( f"{selected_provider} API Key", type="password", key="llm_api_key_input", # Keep existing key help=f"Enter your API key for the selected {selected_provider} provider.", value=st.session_state.get("llm_api_key", "") # Pre-fill if exists ) tavily_api_key_input = st.text_input( "Tavily API Key (Optional)", type="password", key="tavily_api_key_input", # Keep existing key help="Enter your Tavily API key for enabling web search functionality.", value=st.session_state.get("tavily_api_key", "") # Pre-fill if exists ) # Apply Configuration Button if st.button("Apply Configuration", key="apply_config_button"): # Changed key slightly to avoid potential conflicts if previous runs errored strangely with st.spinner("Initializing LLM and Tavily clients..."): # Store keys from inputs into session state st.session_state.llm_api_key = llm_api_key_input st.session_state.tavily_api_key = tavily_api_key_input # Attempt to initialize clients using the backend function llm_inst, tav_inst, error_msg = SDLC.initialize_llm_clients( provider=st.session_state.selected_provider, model_name=st.session_state.selected_model, llm_api_key=st.session_state.llm_api_key, tavily_api_key=st.session_state.tavily_api_key ) # Update state based on initialization result if llm_inst: st.session_state.llm_instance = llm_inst st.session_state.tavily_instance = tav_inst st.session_state.config_applied = True st.success("Configuration applied successfully!") logger.info(f"LLM ({selected_provider}/{selected_model}) and Tavily clients configured via UI.") time.sleep(1) # Brief pause for user to see success message st.rerun() # Rerun to potentially collapse expander and enable main workflow else: st.session_state.config_applied = False st.session_state.llm_instance = None st.session_state.tavily_instance = None error_display = f"Configuration Failed: {error_msg or 'An unknown error occurred.'}" st.error(error_display) logger.error(error_display) st.divider() # --- Downloads Section --- st.header("Downloads") st.caption("Access generated artifacts and code snapshots.") # --- MODIFIED: Document Downloads (MD and PDF) --- st.markdown("---") st.subheader("Documents") # Combined header # Refined Prompt (Appears after Q&A cycle is complete) st.markdown("**Requirements Cycle:**") # Header for this artifact create_download_button(st.session_state.workflow_state.get("refined_prompt_path"), "Refined Prompt (MD)", "text/markdown", "refined_prompt_md", help_text="The final prompt generated after Q&A.") create_download_button(st.session_state.workflow_state.get("refined_prompt_pdf_path"), "Refined Prompt (PDF)", "application/pdf", "refined_prompt_pdf", help_text="PDF version of the refined prompt.") st.markdown("---") # Separator # User Story st.markdown("**User Story Cycle:**") create_download_button(st.session_state.workflow_state.get("final_user_story_path"), "User Story (MD)", "text/markdown", "final_us_md") create_download_button(st.session_state.workflow_state.get("final_user_story_pdf_path"), "User Story (PDF)", "application/pdf", "final_us_pdf") st.markdown("---") # Product Review st.markdown("**Product Review Cycle:**") create_download_button(st.session_state.workflow_state.get("final_product_review_path"), "Product Review (MD)", "text/markdown", "final_pr_md") create_download_button(st.session_state.workflow_state.get("final_product_review_pdf_path"), "Product Review (PDF)", "application/pdf", "final_pr_pdf") st.markdown("---") # Design Document st.markdown("**Design Cycle:**") create_download_button(st.session_state.workflow_state.get("final_design_document_path"), "Design Document (MD)", "text/markdown", "final_dd_md") create_download_button(st.session_state.workflow_state.get("final_design_document_pdf_path"), "Design Document (PDF)", "application/pdf", "final_dd_pdf") st.markdown("---") # QA Report st.markdown("**Quality Analysis Cycle:**") create_download_button(st.session_state.workflow_state.get("final_quality_analysis_path"), "QA Report (MD)", "text/markdown", "final_qa_md") create_download_button(st.session_state.workflow_state.get("final_quality_analysis_pdf_path"), "QA Report (PDF)", "application/pdf", "final_qa_pdf") st.markdown("---") # Deployment Plan st.markdown("**Deployment Cycle:**") create_download_button(st.session_state.workflow_state.get("final_deployment_path"), "Deployment Plan (MD)", "text/markdown", "final_deploy_md") create_download_button(st.session_state.workflow_state.get("final_deployment_pdf_path"), "Deployment Plan (PDF)", "application/pdf", "final_deploy_pdf") # --- END MODIFIED Document Downloads --- # UML Diagram Downloads st.markdown("---") st.subheader("UML Diagrams") uml_png_paths = st.session_state.workflow_state.get("final_uml_png_paths", []) uml_folder = st.session_state.workflow_state.get("final_uml_diagram_folder") if uml_png_paths: st.caption("Download generated PNG images:") # Create download buttons for each generated PNG for i, png_path in enumerate(uml_png_paths): # Attempt to create a meaningful label from the filename try: base_name = os.path.basename(png_path) # Assumes format like 'diagram_01_class_diagram.png' label_parts = base_name.split('_')[2:] # Get parts after 'diagram_xx_' label = ' '.join(label_parts).replace('.png', '').replace('_', ' ').title() if not label: label = f"Diagram {i+1}" # Fallback label except Exception: label = f"Diagram {i+1}" # Generic fallback create_download_button(png_path, f"UML: {label}", "image/png", f"uml_png_{i}") elif uml_folder and os.path.exists(uml_folder): # Indicates UML stage ran but PNGs weren't generated or found st.caption("*No PNG diagrams available for download (check PlantUML setup/server). Puml files might be available in the full project ZIP.*") else: # Indicates UML stage hasn't run or failed before saving st.caption("*UML diagrams have not been generated yet.*") # --- MODIFIED: Code Snapshot Downloads (ZIP) --- st.markdown("---") st.subheader("Code Snapshots (ZIP)") st.caption("Download code versions from various stages.") # Code Generation Cycle Snapshots st.markdown("**Code Generation Cycle:**") create_zip_and_download_button( folder_path_key="snapshot_path_codegen_initial", # Use the new state key zip_path_key="zip_path_cg_initial", # Unique key for session state zip path zip_basename="snapshot_codegen_initial", button_label_prefix="Initial Code", sidebar_context=st.sidebar ) create_zip_and_download_button( folder_path_key="snapshot_path_codegen_refined", # Use the new state key zip_path_key="zip_path_cg_refined", # Unique key zip_basename="snapshot_codegen_refined", button_label_prefix="Refined Code (Latest)", # Label indicates latest sidebar_context=st.sidebar ) st.markdown("---") # Review & Security Cycle Snapshot st.markdown("**Review & Security Cycle:**") create_zip_and_download_button( folder_path_key="snapshot_path_review_refined", # Use the new state key zip_path_key="zip_path_review_refined", # Unique key zip_basename="snapshot_review_refined", button_label_prefix="Post-Review Code", sidebar_context=st.sidebar ) st.markdown("---") # Testing Cycle Snapshots st.markdown("**Testing Cycle:**") create_zip_and_download_button( folder_path_key="snapshot_path_testing_refined", # Use the new state key for failed refinement zip_path_key="zip_path_testing_refined", # Unique key zip_basename="snapshot_testing_refined", button_label_prefix="Post-Failure Refined Code (Latest)", sidebar_context=st.sidebar ) create_zip_and_download_button( folder_path_key="testing_passed_code_folder", # Keep the one saved on PASS zip_path_key="zip_path_testing_passed", # Unique key zip_basename="snapshot_testing_passed", button_label_prefix="Passed Testing Code", sidebar_context=st.sidebar ) st.markdown("---") # Quality Analysis Cycle Snapshot (Final Code) st.markdown("**Quality Analysis Cycle:**") create_zip_and_download_button( folder_path_key="snapshot_path_qa_polished", # Use the new state key (points to final code) zip_path_key="zip_path_qa_polished", # Unique key zip_basename="snapshot_qa_polished_final", button_label_prefix="Final Polished Code", sidebar_context=st.sidebar ) # --- END MODIFIED Code Snapshots --- st.divider() # --- Full Project ZIP (only appears at the end) --- if st.session_state.stage == "END": st.markdown("**Full Project Archive**") st.caption("Download all generated artifacts and code snapshots in a single ZIP.") proj_folder = st.session_state.workflow_state.get("project_folder") abs_proj = os.path.abspath(proj_folder) if proj_folder and isinstance(proj_folder, str) else None if abs_proj and os.path.isdir(abs_proj): zip_label = "Generate & Download Full Project ZIP" if st.session_state.get("zip_path") and os.path.exists(st.session_state.zip_path): zip_label = "Download Full Project ZIP" # Change label if already generated if st.sidebar.button(zip_label, key="zip_gen_final_project_btn"): # Unique key with st.spinner("Creating full project archive..."): try: # Use the project_folder_base which is set at init and guaranteed unique zip_base = os.path.abspath(st.session_state.project_folder_base) out_dir = os.path.dirname(zip_base) # Place zip in parent dir os.makedirs(out_dir, exist_ok=True) root_dir = os.path.dirname(abs_proj) # Parent of the project folder base_dir = os.path.basename(abs_proj) # Name of the project folder logger.info(f"Zipping full project: base_name='{zip_base}', format='zip', root_dir='{root_dir}', base_dir='{base_dir}'") zip_file_path = zip_base + ".zip" # Remove old zip if exists if os.path.exists(zip_file_path): try: os.remove(zip_file_path) logger.info(f"Removed old final project ZIP: {zip_file_path}") except Exception as del_e: logger.warning(f"Could not remove old final project ZIP {zip_file_path}: {del_e}") # Create the archive archive_path = shutil.make_archive( base_name=zip_base, format='zip', root_dir=root_dir, base_dir=base_dir ) # Verify creation if not os.path.exists(archive_path): raise OSError(f"Final project ZIP creation failed: File not found at {archive_path}") st.session_state.zip_path = archive_path # Store path st.success(f"Full project ZIP created: {os.path.basename(archive_path)}") st.rerun() # Update UI except Exception as e: st.sidebar.error(f"Final Project ZIP Error: {e}") logger.error(f"Final project ZIP creation failed: {e}", exc_info=True) # Provide download button if zip exists if st.session_state.get("zip_path") and os.path.exists(st.session_state.zip_path): try: with open(st.session_state.zip_path, "rb") as fp: st.sidebar.download_button( label="Download Full Project ZIP", data=fp, file_name=os.path.basename(st.session_state.zip_path), mime="application/zip", key="dl_zip_final_project_btn" # Unique key ) except Exception as read_e: st.sidebar.warning(f"Error reading final project ZIP: {read_e}") logger.error(f"Error reading final project ZIP {st.session_state.zip_path}: {read_e}", exc_info=True) elif proj_folder: st.sidebar.warning(f"Project folder '{proj_folder}' not found for final ZIP.") else: st.sidebar.caption("*Project folder not yet defined.*") st.divider() # --- Restart Button --- if st.sidebar.button("Restart Workflow", key="restart_workflow_button", help="Clear all progress and configuration, then start over."): # Optional: Add confirmation dialog here if desired logger.info("Workflow restart requested by user.") # Clean up project directory if it exists proj_folder_to_delete = st.session_state.workflow_state.get("project_folder") if proj_folder_to_delete and os.path.isdir(proj_folder_to_delete): try: shutil.rmtree(proj_folder_to_delete) logger.info(f"Removed project folder on restart: {proj_folder_to_delete}") except Exception as e: logger.warning(f"Could not remove project folder '{proj_folder_to_delete}' on restart: {e}") initialize_state() st.rerun() # ============================================================================== # --- Main Layout Area --- # ============================================================================== main_col, indicator_col = st.columns([4, 1]) # Main content area, Cycle indicator sidebar # --- Cycle Change Detection and History Reset --- current_stage = st.session_state.stage current_major_cycle = STAGE_TO_CYCLE.get(current_stage, "Unknown") # Initialize previous cycle tracker if it doesn't exist if 'previous_major_cycle' not in st.session_state: st.session_state.previous_major_cycle = current_major_cycle # Check if the cycle has changed since the last run if st.session_state.previous_major_cycle != current_major_cycle and current_major_cycle != "Unknown": logger.info(f"Detected cycle change: '{st.session_state.previous_major_cycle}' -> '{current_major_cycle}'. Clearing current cycle message display.") st.session_state.current_cycle_messages = [] # Reset the list for the new cycle st.session_state.previous_major_cycle = current_major_cycle # Update the tracker # --- Main Column Content --- with main_col: # Display current stage and cycle title stage_display_name = current_stage.replace('_', ' ').title() if current_stage == "END": st.header("🏁 Workflow Complete") else: st.header(f"Cycle: {current_major_cycle} | Stage: {stage_display_name}") # --- Chat History Display Area (Current Cycle Only) --- st.markdown("### Current Cycle Interaction History") # Get the messages specifically for the current cycle display current_cycle_messages_list = st.session_state.get("current_cycle_messages", []) # Use a container with fixed height for scrollable chat chat_container = st.container(height=350, border=True) with chat_container: if not current_cycle_messages_list: st.caption("No interactions recorded for this cycle yet.") else: # Iterate through messages stored for the current cycle display for msg in current_cycle_messages_list: # Determine role based on message type if isinstance(msg, AIMessage): role = "assistant" avatar = "🤖" elif isinstance(msg, HumanMessage): role = "user" avatar = "🧑‍💻" else: role = "system" # Or handle other types if necessary avatar = "⚙️" with st.chat_message(role, avatar=avatar): # Display message content using markdown # Ensure content is string; handle potential non-string data safely content_display = str(msg.content) if msg.content is not None else "[No Content]" st.markdown(content_display, unsafe_allow_html=False) # Security best practice st.divider() # Visual separator # --- Current Task / Output Display --- st.markdown("### Current Task / Latest Output:") display_area = st.container(border=True) # Add border for visual separation with display_area: # Get content safely, default to a clear message display_content_md = st.session_state.get("display_content", "Awaiting next step...") # Ensure it's a string before displaying if not isinstance(display_content_md, str): display_content_md = str(display_content_md) st.markdown(display_content_md, unsafe_allow_html=False) # Disable HTML rendering st.divider() # Visual separator # --- Input / Decision Widgets --- # Only show workflow UI elements if configuration is applied if not st.session_state.get('config_applied', False): if st.session_state.stage != "initial_setup": # Don't show warning during initial setup itself st.warning("👈 Please apply LLM & API Key configuration in the sidebar to start the workflow.") else: # Determine which UI elements to show based on the current stage current_stage_ui = st.session_state.stage # Use a distinct variable for clarity input_needed_stages = { "collect_answers", "collect_user_story_human_feedback", "collect_product_review_human_feedback", "collect_design_doc_human_feedback", "collect_uml_human_feedback", "collect_code_human_input", "collect_code_human_feedback", "merge_review_security_feedback", # This stage now collects feedback "collect_quality_human_feedback", "collect_deployment_human_feedback" } decision_needed_stages = { "collect_user_story_decision", "collect_product_review_decision", "collect_design_doc_decision", "collect_uml_decision", "collect_code_decision", "collect_review_security_decision", "collect_quality_decision", "collect_deployment_decision" } show_initial_setup_form = (current_stage_ui == "initial_setup") show_deployment_prefs_form = (current_stage_ui == "generate_initial_deployment") show_input_box = current_stage_ui in input_needed_stages show_test_feedback_area = (current_stage_ui == "collect_test_cases_human_feedback") show_decision_buttons = current_stage_ui in decision_needed_stages # --- Initial Setup Form --- if show_initial_setup_form: with st.form("initial_project_setup_form"): # Descriptive key st.markdown("### Project Configuration") st.info("Define the initial parameters for your software project.") # --- Project Folder (Standard Input) --- proj_folder = st.text_input( "Project Folder Name", value=st.session_state.project_folder_base, key="proj_folder_input", help="Directory name for saved outputs. Use valid filesystem characters (no spaces/special chars like /\\:*?\"<>| recommended)." ) # --- Project Description (Text Area with Height) --- proj_name = st.text_area( # MODIFIED: Use text_area "Project Description", value=st.session_state.proj_name_default, # Use a potentially multi-line default key="proj_name_input", height=300, # MODIFIED: Set height help="A detailed description of the project's purpose, features, and goals." ) # --- Category (Text Area with Height) --- proj_cat = st.text_area( # MODIFIED: Use text_area "Category", value=st.session_state.proj_cat_default, # Use a potentially multi-line default key="proj_cat_input", height=150, # MODIFIED: Set height help="Broad category (e.g., Web Development, Data Science). Can be multi-line if needed." ) # --- Subcategory (Text Area with Height) --- proj_subcat = st.text_area( # MODIFIED: Use text_area "Subcategory", value=st.session_state.proj_subcat_default, # Use a potentially multi-line default key="proj_subcat_input", height=150, # MODIFIED: Set height help="More specific classification (e.g., API, Full-Stack App). Can be multi-line." ) # --- Coding Language (Text Area with Height) --- proj_lang = st.text_area( # MODIFIED: Use text_area "Coding Language(s) / Tech Stack", value=st.session_state.proj_lang_default, # Use a potentially multi-line default key="proj_lang_input", height=150, # MODIFIED: Set height help="Primary language(s) and key technologies (e.g., Python, React, Docker). Can be multi-line." ) # --- Min Iterations (Standard Number Input) --- min_iter = st.number_input( "Min Q&A Rounds", min_value=1, max_value=10, # Increased max slightly value=st.session_state.min_iter_default, key="min_iter_input", help="Minimum required rounds of questions and answers for requirements gathering." ) # --- Submit Button --- submitted = st.form_submit_button("Start Workflow") # --- Post-Submission Logic (Your existing code) --- if submitted: # Validation checks error_messages = [] # Trim whitespace from inputs before validation proj_folder = proj_folder.strip() proj_name = proj_name.strip() proj_cat = proj_cat.strip() proj_subcat = proj_subcat.strip() proj_lang = proj_lang.strip() if not all([proj_folder, proj_name, proj_cat, proj_subcat, proj_lang]): error_messages.append("Please fill all configuration fields.") # Basic check for invalid characters, can be expanded invalid_chars = ['/', '\\', ':', '*', '?', '"', '<', '>', '|'] if any(c in proj_folder for c in invalid_chars) or ' ' in proj_folder: error_messages.append("Project Folder Name should not contain spaces or special characters like /\\:*?\"<>|.") if error_messages: for msg in error_messages: st.error(msg) else: try: # Prepare absolute path and check filesystem status abs_proj_folder = os.path.abspath(proj_folder) if os.path.exists(abs_proj_folder) and not os.path.isdir(abs_proj_folder): st.error(f"Error: A file (not a folder) already exists with the name '{proj_folder}'. Please choose a different name.") else: # Create folder if it doesn't exist, warn if it does if os.path.exists(abs_proj_folder): st.warning(f"Warning: Project folder '{abs_proj_folder}' already exists. Files within might be overwritten during the workflow.") else: os.makedirs(abs_proj_folder, exist_ok=True) st.success(f"Project folder created/confirmed: '{abs_proj_folder}'") logger.info(f"Project folder ready: {abs_proj_folder}") # --- Initialize workflow_state --- # Use the (potentially multi-line) inputs directly initial_human_message_content = f"Initial Setup:\n- Project: {proj_name}\n- Category: {proj_cat}/{proj_subcat}\n- Language: {proj_lang}\n- Min Q&A Rounds: {min_iter}" initial_human_message = SDLC.HumanMessage(content=initial_human_message_content) # Build the initial state dictionary carefully initial_workflow_state = { # Core instances (must be present if config applied) "llm_instance": st.session_state.llm_instance, "tavily_instance": st.session_state.tavily_instance, # Communication history starts with the setup message "messages": [initial_human_message], # Project Configuration (using validated/stripped values) "project_folder": proj_folder, "project": proj_name, "category": proj_cat, "subcategory": proj_subcat, "coding_language": proj_lang, # Requirements Gathering State "user_input_iteration": 0, "user_input_min_iterations": min_iter, "user_input_questions": [], "user_input_answers": [], "user_input_done": False, "user_query_with_qa": "", # Will be built later "refined_prompt": "", # Initialize cycle states (using defaults where appropriate) "user_story_current": "", "user_story_feedback": "", "user_story_human_feedback": "", "user_story_done": False, "product_review_current": "", "product_review_feedback": "", "product_review_human_feedback": "", "product_review_done": False, "design_doc_current": "", "design_doc_feedback": "", "design_doc_human_feedback": "", "design_doc_done": False, "uml_selected_diagrams": [], "uml_current_codes": [], "uml_feedback": {}, "uml_human_feedback": {}, "uml_done": False, # Use a valid default GeneratedCode object with placeholder instructions meeting min_length "code_current": SDLC.GeneratedCode(files=[], instructions="[Placeholder - Code not generated yet.]"), "code_human_input": "", "code_web_search_results": "", "code_feedback": "", "code_human_feedback": "", "code_done": False, "code_review_current_feedback": "", "security_current_feedback": "", "review_security_human_feedback": "", "review_security_done": False, "test_cases_current": [], "test_cases_feedback": "", "test_cases_human_feedback": "", "test_cases_passed": False, "quality_current_analysis": "", "quality_feedback": "", "quality_human_feedback": "", "quality_done": False, "deployment_current_process": "", "deployment_feedback": "", "deployment_human_feedback": "", "deployment_done": False, # Final artifact storage (initialize as None or empty) "final_user_story": "", "final_product_review": "", "final_design_document": "", "final_uml_codes": [], "final_code_files": [], "final_code_review": "", "final_security_issues": "", "final_test_code_files": [], "final_quality_analysis": "", "final_deployment_process": "", # --- ADDED/MODIFIED: Initialize MD/PDF paths --- "refined_prompt_path": None, "refined_prompt_pdf_path": None, "final_user_story_path": None, "final_user_story_pdf_path": None, "final_product_review_path": None, "final_product_review_pdf_path": None, "final_design_document_path": None, "final_design_document_pdf_path": None, "final_uml_diagram_folder": None, "final_uml_png_paths": [], "final_review_security_folder": None, "review_code_snapshot_folder": None, "final_testing_folder": None, "testing_passed_code_folder": None, "final_quality_analysis_path": None, # MD path "final_quality_analysis_pdf_path": None, # PDF path "final_code_folder": None, "final_deployment_path": None, # MD path "final_deployment_pdf_path": None, # PDF path # --- END ADDED/MODIFIED --- # Intermediate Snapshot Paths "snapshot_path_codegen_initial": None, "snapshot_path_codegen_refined": None, "snapshot_path_review_refined": None, "snapshot_path_testing_refined": None, "snapshot_path_qa_polished": None, } # Update the main session state variables st.session_state.workflow_state = initial_workflow_state st.session_state.project_folder_base = proj_folder # Update base if user changed it st.session_state.stage = "run_generate_questions" # Move to the first processing stage # Add the initial setup message to the current cycle display list st.session_state.current_cycle_messages.append(initial_human_message) # Ensure previous_major_cycle is set for the first cycle if st.session_state.previous_major_cycle is None: st.session_state.previous_major_cycle = STAGE_TO_CYCLE.get("initial_setup", "Requirements") logger.info(f"Initial setup complete. Starting workflow for project '{proj_name}'.") st.rerun() # Rerun to start the workflow execution except OSError as oe: st.error(f"Filesystem Error creating folder '{proj_folder}': {oe}. Check permissions or choose a different name.") logger.error(f"OSError during initial setup folder creation: {oe}", exc_info=True) except Exception as e: st.error(f"An unexpected error occurred during setup: {e}") logger.error(f"Unexpected error during initial setup: {e}", exc_info=True) # --- Deployment Preferences Form --- elif show_deployment_prefs_form: with st.form("deployment_preferences_form"): # Descriptive key st.markdown("### Deployment Preferences") st.info("Specify your desired deployment target and any relevant details.") # Common deployment targets deploy_target = st.selectbox( "Target Environment", options=["Localhost (using Docker)", "Docker (generic)", "AWS EC2", "AWS ECS/Fargate", "AWS Lambda", "Google Cloud Run", "Google Kubernetes Engine (GKE)", "Azure App Service", "Azure Kubernetes Service (AKS)", "Other Cloud VM", "Other Serverless", "Other Container Orchestrator"], key="deploy_target_select", help="Choose the primary target environment for deployment." ) deploy_details = st.text_area( "Additional Details / Constraints:", height=100, key="deploy_details_input", placeholder="e.g., Specific AWS region (us-east-1), use Nginx as reverse proxy, database connection string source, required OS, any existing infrastructure to leverage.", help="Provide any specific requirements, configurations, or constraints for the deployment." ) submitted = st.form_submit_button("Generate Deployment Plan") if submitted: # Combine preferences into a string for the backend prefs = f"Target Environment: {deploy_target}\nAdditional Details: {deploy_details}" st.session_state.current_prefs = prefs # Store for potential use/display later st.session_state.stage = "run_generate_initial_deployment" # Move to the processing stage logger.info(f"Deployment preferences collected: Target='{deploy_target}'") # Add human message for context deploy_prefs_message = SDLC.HumanMessage(content=f"Deployment Preferences Set:\n{prefs}") st.session_state.workflow_state["messages"].append(deploy_prefs_message) st.session_state.current_cycle_messages.append(deploy_prefs_message) st.rerun() # --- General Input/Feedback Text Area --- elif show_input_box: input_label = "Your Input / Feedback:" input_help = "Provide your answers or feedback here. For Q&A, type '#DONE' on a new line when finished with the current round." # Customize label/help based on stage if needed if current_stage_ui == "collect_answers": input_label = "Your Answers:" elif current_stage_ui == "collect_code_human_input": input_label = "Describe Issues / Provide Input for Code:" input_help = "Describe any errors encountered, unexpected behavior, or specific inputs you want the AI to test/consider." elif current_stage_ui == "merge_review_security_feedback": input_label = "Your Feedback on Review/Security Reports:" input_help = "Provide any comments, clarifications, or priorities regarding the code review and security findings." input_key = f"text_input_{current_stage_ui}" # Stage-specific key user_val = st.text_area( input_label, height=150, key=input_key, value=st.session_state.get('user_input', ''), # Use temporary storage if needed for complex edits help=input_help ) submit_key = f"submit_button_{current_stage_ui}" # Stage-specific key if st.button("Submit", key=submit_key): user_text = user_val.strip() # Basic validation: Ensure input is not empty if not user_text: st.warning("Please enter some input before submitting.") else: state = st.session_state.workflow_state # Validate state type if not isinstance(state, dict): st.error("Workflow state is invalid. Restarting.") logger.critical("Workflow state became invalid (not a dict). Forcing restart.") initialize_state() st.rerun() st.stop() try: next_stage = None # Initialize next stage # Ensure message list exists in state if 'messages' not in state or not isinstance(state['messages'], list): state['messages'] = [] # Create the HumanMessage object human_message = SDLC.HumanMessage(content=user_text) # Add to master list state["messages"].append(human_message) # Add to current cycle display list if 'current_cycle_messages' not in st.session_state: st.session_state.current_cycle_messages = [] st.session_state.current_cycle_messages.append(human_message) # --- Map current stage to state key, next run stage, and input type --- # Tuple format: (state_key_to_update, next_processing_stage, needs_list_append) map_logic = { "collect_answers": ("user_input_answers", "run_generate_questions", True), "collect_user_story_human_feedback": ("user_story_human_feedback", "run_refine_user_stories", False), "collect_product_review_human_feedback": ("product_review_human_feedback", "run_refine_product_review", False), "collect_design_doc_human_feedback": ("design_doc_human_feedback", "run_refine_design_doc", False), "collect_uml_human_feedback": ("uml_human_feedback", "run_refine_uml_codes", False), # Special dict handling below "collect_code_human_input": ("code_human_input", "run_web_search_code", False), "collect_code_human_feedback": ("code_human_feedback", "run_refine_code", False), "merge_review_security_feedback": ("review_security_human_feedback", "run_refine_code_with_reviews", False), "collect_quality_human_feedback": ("quality_human_feedback", "run_refine_quality_and_code", False), "collect_deployment_human_feedback": ("deployment_human_feedback", "run_refine_deployment", False), } if current_stage_ui in map_logic: key_to_update, next_process_stage, is_list_input = map_logic[current_stage_ui] # Store the input text in the workflow state dictionary if is_list_input: # Append input to the list for this key state[key_to_update] = state.get(key_to_update, []) + [user_text] elif key_to_update == "uml_human_feedback": # Store UML feedback in the expected dict format, using 'all' for simplicity state[key_to_update] = {"all": user_text} else: # Overwrite state key with the new text value state[key_to_update] = user_text next_stage = next_process_stage # Set the next stage for processing # --- Special Handling Logic --- # Q&A Completion Check if current_stage_ui == "collect_answers": state["user_input_iteration"] = state.get("user_input_iteration", 0) + 1 min_iterations_required = state.get("user_input_min_iterations", 1) # Check if #DONE is present (case-insensitive) in the last non-empty line lines = [line.strip() for line in user_text.splitlines() if line.strip()] is_done_signal_present = "#DONE" in lines[-1].upper() if lines else False logger.debug(f"Q&A Iteration: {state['user_input_iteration']} / {min_iterations_required}. '#DONE' signal present: {is_done_signal_present}") # Check if minimum iterations met AND done signal given if state["user_input_iteration"] >= min_iterations_required and is_done_signal_present: state["user_input_done"] = True next_stage = "run_refine_prompt" # Override: Q&A phase is finished, move to refining the prompt logger.info("Minimum Q&A iterations met and #DONE signal received. Proceeding to prompt refinement.") else: state["user_input_done"] = False # next_stage remains 'run_generate_questions' (to ask more questions) logger.info("Continuing Q&A round.") # Skip Web Search if Tavily is not configured if current_stage_ui == "collect_code_human_input" and not state.get('tavily_instance'): state["code_web_search_results"] = "Skipped (Tavily client not configured)" next_stage = "run_generate_code_feedback" # Skip web search and go directly to code feedback logger.info("Tavily not configured. Skipping web search step.") else: # Fallback if stage logic is somehow missing st.error(f"Internal Error: Input handling logic is undefined for stage '{current_stage_ui}'. Please report this.") logger.error(f"Input handling logic missing for defined input stage: {current_stage_ui}") # --- Transition to Next Stage --- if next_stage: st.session_state.workflow_state = state # Commit state changes st.session_state.user_input = "" # Clear the temporary input box content on successful submission st.session_state.stage = next_stage # Update the application stage logger.info(f"User input submitted for stage '{current_stage_ui}'. Transitioning to stage '{next_stage}'.") st.rerun() # Rerun Streamlit to reflect the new stage except Exception as e: st.error(f"An error occurred while processing your input: {e}") logger.error(f"Error processing input for stage '{current_stage_ui}': {e}", exc_info=True) # Keep the input in the text box on error by not clearing st.session_state.user_input # --- Test Execution Feedback Area --- elif show_test_feedback_area: st.markdown("### Test Execution & Feedback") st.info("Please execute the generated tests against the code. Then, provide feedback on the results and indicate if the core functionality passed.") # Display AI feedback on the tests for context ai_test_feedback = st.session_state.workflow_state.get("test_cases_feedback", "*No AI feedback on tests was generated.*") with st.expander("View AI Feedback on Test Cases"): st.markdown(ai_test_feedback) # Input area for human feedback/results human_fb_text = st.text_area( "Your Feedback & Test Results:", height=150, key="test_case_human_feedback_input", # Unique key help="Describe which tests passed/failed, provide any error messages, stack traces, or observations from running the tests." ) # Radio button for overall PASS/FAIL status pass_fail_status = st.radio( "Did the core functionality pass the tests?", options=("PASS", "FAIL"), index=1, # Default to FAIL key="test_case_pass_fail_radio", # Unique key horizontal=True, help="Select PASS only if the critical user stories are working as expected based on your testing." ) # Action buttons col1, col2 = st.columns(2) with col1: # Submit Results button submit_key_test = "submit_test_results_button" # Unique key if st.button("Submit Test Results", key=submit_key_test): state = st.session_state.workflow_state # Ensure messages list exists if 'messages' not in state or not isinstance(state['messages'], list): state['messages'] = [] # Format feedback and create HumanMessage feedback_content = f"Test Execution Summary:\n- Overall Status: {pass_fail_status}\n- Detailed Feedback/Results:\n{human_fb_text}" human_message = SDLC.HumanMessage(content=feedback_content) # Add message to master list and current cycle display state["messages"].append(human_message) if 'current_cycle_messages' not in st.session_state: st.session_state.current_cycle_messages = [] st.session_state.current_cycle_messages.append(human_message) # Update state with feedback and pass/fail status state["test_cases_human_feedback"] = feedback_content state["test_cases_passed"] = (pass_fail_status == "PASS") logger.info(f"Test results submitted. Overall status: {pass_fail_status}.") # Determine next stage based on pass/fail next_stage_after_test = "run_save_testing_outputs" if state["test_cases_passed"] else "run_refine_test_cases_and_code" st.session_state.stage = next_stage_after_test st.session_state.workflow_state = state # Commit state changes logger.info(f"Transitioning to stage '{next_stage_after_test}' based on test results.") st.rerun() with col2: # Submit & Regenerate Code button (optional, allows skipping refinement) regen_key_test = "regenerate_code_from_testing_button" # Unique key if st.button("Regenerate Code (If Stuck)", key=regen_key_test, help="Use this if refinement isn't working and you want the AI to try generating code again from scratch, incorporating this test feedback."): state = st.session_state.workflow_state if 'messages' not in state or not isinstance(state['messages'], list): state['messages'] = [] # Format feedback indicating regeneration request feedback_content_regen = f"Test Execution Summary:\n- Overall Status: {pass_fail_status}\n- Detailed Feedback/Results:\n{human_fb_text}\n\nDecision: Requesting full code regeneration based on this feedback." human_message_regen = SDLC.HumanMessage(content=feedback_content_regen) # Add message to history state["messages"].append(human_message_regen) if 'current_cycle_messages' not in st.session_state: st.session_state.current_cycle_messages = [] st.session_state.current_cycle_messages.append(human_message_regen) # Store feedback, ensure test_cases_passed is False state["test_cases_human_feedback"] = feedback_content_regen # Store context state["test_cases_passed"] = False # Force refinement/regen path logger.info(f"Test feedback submitted ({pass_fail_status}), requesting code regeneration.") # --- Prepare Context for Code Regeneration --- # Package testing feedback to guide the *initial* code generation step again regen_context = f"Context from Failed Testing Cycle:\n- Overall Status: {pass_fail_status}\n- User Feedback/Errors:\n{human_fb_text}\n- AI Feedback on Failed Tests:\n{ai_test_feedback}\n\nInstruction: Regenerate the entire codebase attempting to address these issues from the start." state["code_human_input"] = regen_context # Use the input field of the code generation cycle # Add context message (optional, can be verbose but useful for tracing) context_message = SDLC.HumanMessage(content=f"Context Forwarded for Code Regeneration (from Testing): {regen_context[:300]}...") state["messages"].append(context_message) # Add to master list st.session_state.current_cycle_messages.append(context_message) # Add to cycle list # --- Transition Back to Code Generation --- # NOTE: This jumps back significantly. Consider if a less drastic jump is desired. # For now, jumping back to the *input* stage before initial code gen. st.session_state.stage = "run_generate_initial_code" # Go back to generate initial code st.session_state.workflow_state = state # Commit state logger.info("Transitioning back to 'run_generate_initial_code' for regeneration based on test feedback.") st.rerun() # --- Decision Buttons (Approve/Refine) --- elif show_decision_buttons: st.markdown("### Decision Point") st.info("Review the latest output for this cycle. Choose whether to refine it further based on feedback or approve it and proceed to the next cycle.") # Define mappings for Refine and Proceed actions based on the current stage # Refine Map: current_decision_stage -> next_feedback_or_input_stage refine_map = { "collect_user_story_decision": "run_generate_user_story_feedback", "collect_product_review_decision": "run_generate_product_review_feedback", "collect_design_doc_decision": "run_generate_design_doc_feedback", "collect_uml_decision": "run_generate_uml_feedback", "collect_code_decision": "collect_code_human_input", # Refining code usually needs new input/issues "collect_review_security_decision": "run_code_review", # Restart review cycle "collect_quality_decision": "run_generate_quality_feedback", "collect_deployment_decision": "run_generate_deployment_feedback", } # Proceed Map: current_decision_stage -> (done_flag_key, save_function or None, next_cycle_start_stage) proceed_map = { "collect_user_story_decision": ("user_story_done", SDLC.save_final_user_story, "run_generate_initial_product_review"), "collect_product_review_decision": ("product_review_done", SDLC.save_final_product_review, "run_generate_initial_design_doc"), "collect_design_doc_decision": ("design_doc_done", SDLC.save_final_design_doc, "run_select_uml_diagrams"), "collect_uml_decision": ("uml_done", SDLC.save_final_uml_diagrams, "run_generate_initial_code"), # Proceeding from Code Generation saves the current code to final_code_files "collect_code_decision": ("code_done", None, "run_code_review"), # No specific save func here, handled in logic below "collect_review_security_decision": ("review_security_done", SDLC.save_review_security_outputs, "run_generate_initial_test_cases"), "collect_quality_decision": ("quality_done", SDLC.save_final_quality_analysis, "generate_initial_deployment"), # Go to deployment prefs form "collect_deployment_decision": ("deployment_done", SDLC.save_final_deployment_plan, "END"), # End of workflow } # Determine button layout (add third button for QA code regen) num_cols = 3 if current_stage_ui == "collect_quality_decision" else 2 cols = st.columns(num_cols) # --- Refine Button --- with cols[0]: refine_key = f"refine_button_{current_stage_ui}" # Unique key if st.button("Refine Further", key=refine_key, help="Go back and provide more feedback or request AI changes for the current artifact(s)."): if current_stage_ui in refine_map: state = st.session_state.workflow_state # Mark as not done (to allow refinement loop) done_key = current_stage_ui.replace("collect_", "").replace("_decision", "_done") state[done_key] = False next_refine_stage = refine_map[current_stage_ui] # Add human message indicating decision refine_message = SDLC.HumanMessage(content=f"Decision: Refine '{current_major_cycle}' cycle further.") state['messages'] = state.get('messages', []) + [refine_message] if 'current_cycle_messages' not in st.session_state: st.session_state.current_cycle_messages = [] st.session_state.current_cycle_messages.append(refine_message) # Transition to the refinement starting stage st.session_state.stage = next_refine_stage st.session_state.workflow_state = state logger.info(f"Decision made to Refine cycle '{current_major_cycle}'. Transitioning to stage '{next_refine_stage}'.") st.rerun() else: st.warning(f"Refinement logic is not defined for stage '{current_stage_ui}'.") logger.warning(f"Attempted to refine from stage '{current_stage_ui}' but no refine path is defined.") # --- Proceed Button --- with cols[1]: proceed_key = f"proceed_button_{current_stage_ui}" # Unique key if st.button("Approve & Proceed", key=proceed_key, help="Finalize the current cycle's artifacts and move to the next stage of the workflow."): if current_stage_ui in proceed_map: state = st.session_state.workflow_state done_key, save_function, next_major_stage = proceed_map[current_stage_ui] error_occurred = False try: # Mark the cycle as done state[done_key] = True logger.info(f"Decision made to Proceed from cycle '{current_major_cycle}'. Marked '{done_key}'=True.") # Add human message indicating decision proceed_message = SDLC.HumanMessage(content=f"Decision: Approve and proceed from '{current_major_cycle}' cycle.") state['messages'] = state.get('messages', []) + [proceed_message] if 'current_cycle_messages' not in st.session_state: st.session_state.current_cycle_messages = [] st.session_state.current_cycle_messages.append(proceed_message) # --- Special Handling for Code Promotion --- # When proceeding from Code Generation, store the current code as the baseline for Review/Security if current_stage_ui == "collect_code_decision": current_code_object = state.get("code_current") if current_code_object and isinstance(current_code_object, SDLC.GeneratedCode) and current_code_object.files: state["final_code_files"] = current_code_object.files # This becomes the input for the next stage logger.info(f"Promoted {len(current_code_object.files)} code files from 'code_current' to 'final_code_files' for Review cycle.") else: st.warning("Proceeding from Code Generation, but the 'code_current' state seems invalid or empty. Review cycle might lack code.") logger.warning("Proceeding from Code Generation, but 'code_current' is invalid or has no files. Setting 'final_code_files' to empty list.") state["final_code_files"] = [] # --- Execute Save Function (if applicable) --- if save_function: save_func_name = getattr(save_function, '__name__', 'artifact_save_function') logger.info(f"Executing save function: {save_func_name}") with st.spinner(f"Saving {save_func_name.replace('save_final_', '').replace('_', ' ')}..."): state = save_function(state) # Update state with results of save function (e.g., file paths) st.session_state.workflow_state = state # Commit state update # --- Post-Save Validation (Check if expected output path exists) --- # Map save functions to the state keys where they store output paths save_path_keys = { SDLC.save_final_user_story: "final_user_story_path", SDLC.save_final_product_review: "final_product_review_path", SDLC.save_final_design_doc: "final_design_document_path", SDLC.save_final_uml_diagrams: "final_uml_diagram_folder", # Check folder for UML SDLC.save_review_security_outputs: "final_review_security_folder", # Check main folder SDLC.save_testing_outputs: "final_testing_folder", # Check main folder SDLC.save_final_quality_analysis: "final_quality_analysis_path", # Check report path SDLC.save_final_deployment_plan: "final_deployment_path", } expected_path_key = save_path_keys.get(save_function) saved_path_value = state.get(expected_path_key) if expected_path_key else True # Assume success if no path key expected # Check if the path exists (and is a file/dir as appropriate) save_successful = False if expected_path_key: if saved_path_value and isinstance(saved_path_value, str) and os.path.exists(saved_path_value): # Basic check: path exists. Could add isfile/isdir if needed. save_successful = True else: save_successful = True # No specific path to check # Additionally check for QA saving the final code folder if save_function == SDLC.save_final_quality_analysis: final_code_folder_path = state.get("final_code_folder") if not (final_code_folder_path and os.path.isdir(final_code_folder_path)): save_successful = False # Mark as failed if final code didn't save properly if not save_successful: st.warning(f"Proceeding, but the save operation for '{current_major_cycle}' might have failed (output path invalid or missing). Check logs.") logger.warning(f"Save check failed after running {save_func_name}. Expected path key: {expected_path_key}, Value: {saved_path_value}") else: logger.info(f"Save function {save_func_name} completed successfully and path validation passed (if applicable).") except Exception as e: st.error(f"An error occurred while finalizing cycle '{current_major_cycle}': {e}") logger.error(f"Error during 'Proceed' action for stage '{current_stage_ui}': {e}", exc_info=True) error_occurred = True # Transition only if no errors occurred if not error_occurred: st.session_state.stage = next_major_stage logger.info(f"Transitioning to the next cycle's start stage: '{next_major_stage}'") st.rerun() else: st.warning(f"Proceed logic is not defined for stage '{current_stage_ui}'.") logger.warning(f"Attempted to proceed from stage '{current_stage_ui}' but no proceed path is defined.") # --- Regenerate Code Button (Only for QA Decision) --- if current_stage_ui == "collect_quality_decision": with cols[2]: regen_key_qa = "regenerate_code_from_qa_button" # Unique key if st.button("Regenerate Code", key=regen_key_qa, help="If QA revealed significant issues needing a code rewrite, use this to jump back to code generation, providing QA feedback as context."): state = st.session_state.workflow_state if 'messages' not in state or not isinstance(state['messages'], list): state['messages'] = [] logger.info("Decision: Requesting code regeneration based on QA findings.") # Add human message regen_message = SDLC.HumanMessage(content="Decision: Regenerate code based on Quality Analysis findings.") state["messages"].append(regen_message) if 'current_cycle_messages' not in st.session_state: st.session_state.current_cycle_messages = [] st.session_state.current_cycle_messages.append(regen_message) # --- Prepare context for regeneration --- qa_report_summary = state.get('quality_current_analysis', 'No QA report available.')[:1500] # Limit summary length regen_context = f"Context from Quality Analysis Cycle:\n- Final QA Report Summary:\n{qa_report_summary}\n\nInstruction: Regenerate the codebase attempting to address the quality concerns raised in the report." state["code_human_input"] = regen_context # Feed context into the code gen input # Add context message to history context_message = SDLC.HumanMessage(content=f"Context Forwarded for Code Regeneration (from QA): {regen_context[:300]}...") state["messages"].append(context_message) st.session_state.current_cycle_messages.append(context_message) # --- Transition back to Code Generation --- st.session_state.stage = "run_generate_initial_code" # Jump back st.session_state.workflow_state = state logger.info("Transitioning back to 'run_generate_initial_code' for regeneration based on QA feedback.") st.rerun() # --- End Stage --- elif current_stage_ui == "END": st.balloons() final_message = "## 🎉 Workflow Completed Successfully! 🎉\n\nAll cycles have been processed.\n\nYou can download the final artifacts and code snapshots from the sidebar.\n\nUse the 'Restart Workflow' button in the sidebar to begin a new project." update_display(final_message) # Update the display area as well st.markdown(final_message) logger.info("Workflow reached END stage.") # --- Fallback for Unknown UI Stages --- # This handles cases where the stage is not 'initial_setup', not a 'run_' stage, # and not one of the known input/decision stages. Should ideally not happen. elif not current_stage_ui.startswith("run_"): st.error(f"Internal Error: Reached an unknown UI interaction stage: '{current_stage_ui}'. The workflow might be stuck. Consider restarting.") logger.error(f"Reached unknown UI stage: {current_stage_ui}. State might be inconsistent.") # ============================================================================== # --- Cycle Indicator Column --- # ============================================================================== with indicator_col: st.subheader("Workflow Cycles") st.caption("Current progress through the SDLC.") # Determine the current cycle index for highlighting current_major_indicator = STAGE_TO_CYCLE.get(st.session_state.stage, "Unknown") current_idx_indicator = -1 # Default if stage/cycle is unknown if current_major_indicator == "END": current_idx_indicator = len(CYCLE_ORDER) # Mark as completed elif current_major_indicator in CYCLE_ORDER: current_idx_indicator = CYCLE_ORDER.index(current_major_indicator) # Simple CSS for styling the cycle list st.markdown(""" """, unsafe_allow_html=True) # Display the cycle list with indicators # Optionally implement windowing/scrolling if list gets very long # win_before, win_after = 2, 4 # Example windowing parameters # start = max(0, current_idx_indicator - win_before) # end = min(len(CYCLE_ORDER), start + win_before + win_after + 1) # start = max(0, end - (win_before + win_after + 1)) # Adjust start if end was clamped for i, cycle_name in enumerate(CYCLE_ORDER): # if start <= i < end : # Apply windowing if uncommented above css_class = "cycle-item" display_name = cycle_name if i < current_idx_indicator: css_class += " cycle-past" display_name = f"✓ {cycle_name}" # Indicate past cycles elif i == current_idx_indicator and current_major_indicator != "END": css_class += " cycle-current" display_name = f"➡️ {cycle_name}" # Indicate current cycle else: # Future cycles css_class += " cycle-future" # Render the cycle item using markdown with embedded HTML/CSS st.markdown(f'
{display_name}
', unsafe_allow_html=True) # Display completion marker if workflow is finished if current_major_indicator == "END": st.markdown(f'
✅ Workflow End
', unsafe_allow_html=True) # ============================================================================== # --- Invisible Stage Execution Logic --- # ============================================================================== def run_workflow_step(func, next_display_stage, *args): """ Executes a backend workflow function (from SDLC.py), handles state updates, manages display content, adds messages to history, and transitions the UI stage. Args: func: The backend function to execute (e.g., SDLC.generate_questions). next_display_stage: The stage the UI should transition to after this step completes. *args: Additional arguments required by the backend function. """ state_before = st.session_state.workflow_state messages_before_count = len(state_before.get('messages', [])) # --- Define a VALID default GeneratedCode object for safety --- # This object includes the required 'instructions' field. valid_default_code = SDLC.GeneratedCode(files=[], instructions="[Default Instructions - Code Not Generated or Error]") # --- Pre-execution Checks --- if not isinstance(state_before, dict): st.error("Workflow state has become invalid. Please restart.") logger.critical("Workflow state is not a dictionary. Halting execution.") initialize_state() # Consider resetting state automatically or just stopping st.rerun() return # Stop execution # Get function name for logging/display func_name = getattr(func, '__name__', repr(func)) # Handle lambda function name (specifically for deployment) if func_name == '': func_name = "generate_initial_deployment" logger.info(f"Executing workflow step: {func_name}") try: # Show spinner during execution with st.spinner(f"Running: {func_name.replace('_',' ').title()}..."): # --- Check for Required Resources (LLM, Tavily) --- needs_llm = func not in [ SDLC.save_final_user_story, SDLC.save_final_product_review, SDLC.save_final_design_doc, SDLC.save_final_uml_diagrams, SDLC.save_review_security_outputs, SDLC.save_testing_outputs, SDLC.save_final_quality_analysis, SDLC.save_final_deployment_plan, SDLC.web_search_code # Web search uses Tavily, checked separately ] if needs_llm and not state_before.get('llm_instance'): raise ConnectionError("LLM client is not configured or initialized in the workflow state.") # --- Handle Skippable Steps (e.g., Web Search) --- if func == SDLC.web_search_code and not state_before.get('tavily_instance'): logger.warning("Web search step called, but Tavily client is not available in state. Skipping step.") state_before["code_web_search_results"] = "Skipped (Tavily client not configured or API key missing)" # Add a message indicating the skip skip_message = AIMessage(content="Web Search: Skipped (Tavily client unavailable)") state_before["messages"] = state_before.get("messages", []) + [skip_message] if 'current_cycle_messages' not in st.session_state: st.session_state.current_cycle_messages = [] st.session_state.current_cycle_messages.append(skip_message) # Manually update state and transition st.session_state.workflow_state = state_before st.session_state.stage = "run_generate_code_feedback" # Define the stage *after* web search logger.info("Skipped web search. Transitioning directly to 'run_generate_code_feedback'.") st.rerun() return # Exit this function call # --- Special Handling for Sequential Review/Security Steps --- # If the function is code_review, run it, update state, and immediately trigger security_check if func == SDLC.code_review: logger.info("Executing code review step...") state_after_review = SDLC.code_review(state_before, *args) if not isinstance(state_after_review, dict): raise TypeError(f"Function 'code_review' did not return a dictionary state. Got: {type(state_after_review)}") # Add any new messages from code_review to the cycle display messages_after_review_count = len(state_after_review.get('messages', [])) new_review_messages = state_after_review.get('messages', [])[messages_before_count:messages_after_review_count] if new_review_messages: if 'current_cycle_messages' not in st.session_state: st.session_state.current_cycle_messages = [] st.session_state.current_cycle_messages.extend(new_review_messages) # Update the main state st.session_state.workflow_state = state_after_review # Transition directly to the security check stage st.session_state.stage = "run_security_check" logger.info("Code review completed. Transitioning directly to 'run_security_check'.") st.rerun() return # Exit this function call, security check will run on the next rerun # --- Normal Function Execution --- updated_state = func(state_before, *args) # --- Post-execution State Update and Validation --- if not isinstance(updated_state, dict): # This indicates a fundamental issue with the backend function logger.error(f"Workflow function '{func_name}' returned an invalid type: {type(updated_state)}. Expected a dictionary.") st.error(f"Internal Error: Step '{func_name}' failed due to an unexpected return type. Workflow halted.") st.stop() # Halt execution as state is likely corrupted return st.session_state.workflow_state = updated_state logger.debug(f"State successfully updated after executing {func_name}.") # --- Add New AI Messages to Cycle Display --- messages_after_count = len(updated_state.get('messages', [])) new_messages = updated_state.get('messages', [])[messages_before_count:messages_after_count] if new_messages: # Filter to only add AI messages generated by this step new_ai_messages = [msg for msg in new_messages if isinstance(msg, AIMessage)] if new_ai_messages: if 'current_cycle_messages' not in st.session_state: st.session_state.current_cycle_messages = [] st.session_state.current_cycle_messages.extend(new_ai_messages) logger.debug(f"Added {len(new_ai_messages)} new AI message(s) from {func_name} to cycle display.") # --- Determine Display Content for the Next UI Stage --- # (This complex block sets `display_text` and potentially overrides `next_display_stage`) display_text = f"Completed step: {func_name}. Preparing for {next_display_stage}..." # Default message if func == SDLC.generate_questions: # Display the newly generated questions questions = updated_state.get("user_input_questions", [])[-5:] # Get last 5 questions if questions: min_iter = updated_state.get('user_input_min_iterations', 1) current_iter = updated_state.get("user_input_iteration", 0) # Iteration *before* answering these is_min_met = (current_iter + 1 >= min_iter) # Check if *this round* meets the minimum min_iter_msg = f"(Minimum {min_iter} rounds required)" if not is_min_met else "" display_text = f"**Please answer the following questions {min_iter_msg}:**\n\n" + "\n".join(f"- {q}" for q in questions) if is_min_met: display_text += "\n\n*When finished answering, type **#DONE** on a new line to proceed.*" next_display_stage = "collect_answers" # Ensure UI goes to answer collection else: # If no questions were generated (e.g., AI decided it's enough) display_text = "The AI generated no further questions. Refining the project prompt based on the discussion..." logger.info("No new questions generated by AI. Moving to refine prompt.") next_display_stage = "run_refine_prompt" # Skip answer collection elif func == SDLC.refine_prompt: refined_prompt = updated_state.get('refined_prompt', '*Error: Refined prompt not found in state.*') display_text = f"**Refined Project Prompt:**\n```markdown\n{refined_prompt}\n```\n\n*Generating initial User Stories based on this prompt...*" elif func == SDLC.generate_initial_user_stories: stories = updated_state.get('user_story_current', '*Error: User stories not found.*') display_text = f"**Initial User Stories Generated:**\n\n{stories}\n\n*Generating AI feedback on these stories...*" elif func == SDLC.generate_user_story_feedback: current_stories = updated_state.get('user_story_current', '*N/A*') ai_feedback = updated_state.get('user_story_feedback', '*N/A*') display_text = f"**Current User Stories:**\n```\n{current_stories}\n```\n---\n**AI Feedback on Stories:**\n\n{ai_feedback}\n\n---\n*Please provide your feedback or desired changes below.*" next_display_stage = "collect_user_story_human_feedback" # Ready for human input elif func == SDLC.refine_user_stories: refined_stories = updated_state.get('user_story_current', '*N/A*') display_text = f"**Refined User Stories:**\n\n{refined_stories}\n\n*Please review the refined stories. Choose 'Refine Further' or 'Approve & Proceed' below.*" next_display_stage = "collect_user_story_decision" # Ready for decision elif func == SDLC.generate_initial_product_review: review = updated_state.get('product_review_current', '*N/A*') display_text = f"**Initial Product Owner Review Generated:**\n\n{review}\n\n*Generating AI feedback on this review...*" elif func == SDLC.generate_product_review_feedback: current_review = updated_state.get('product_review_current', '*N/A*') ai_feedback = updated_state.get('product_review_feedback', '*N/A*') display_text = f"**Current Product Review:**\n```\n{current_review}\n```\n---\n**AI Feedback on Review:**\n\n{ai_feedback}\n\n---\n*Please provide your feedback or desired changes below.*" next_display_stage = "collect_product_review_human_feedback" elif func == SDLC.refine_product_review: refined_review = updated_state.get('product_review_current', '*N/A*') display_text = f"**Refined Product Review:**\n\n{refined_review}\n\n*Please review the refined PO review. Choose 'Refine Further' or 'Approve & Proceed' below.*" next_display_stage = "collect_product_review_decision" elif func == SDLC.generate_initial_design_doc: doc = updated_state.get('design_doc_current', '*N/A*') display_text = f"**Initial Design Document Generated:**\n```markdown\n{doc}\n```\n\n*Generating AI feedback on this document...*" elif func == SDLC.generate_design_doc_feedback: current_doc = updated_state.get('design_doc_current', '*N/A*') ai_feedback = updated_state.get('design_doc_feedback', '*N/A*') display_text = f"**Current Design Document:**\n```markdown\n{current_doc}\n```\n---\n**AI Feedback on Design:**\n\n{ai_feedback}\n\n---\n*Please provide your feedback or desired changes below.*" next_display_stage = "collect_design_doc_human_feedback" elif func == SDLC.refine_design_doc: refined_doc = updated_state.get('design_doc_current', '*N/A*') display_text = f"**Refined Design Document:**\n```markdown\n{refined_doc}\n```\n\n*Please review the refined design. Choose 'Refine Further' or 'Approve & Proceed' below.*" next_display_stage = "collect_design_doc_decision" elif func == SDLC.select_uml_diagrams: messages = updated_state.get('messages', []) # Try to find the specific justification message from the AI justification_msg_content = "Relevant UML diagram types selected based on the design." # Default if messages and isinstance(messages[-1], AIMessage) and ("selected" in messages[-1].content.lower() or "recommend" in messages[-1].content.lower()): justification_msg_content = messages[-1].content # Use the actual AI message content display_text = f"**UML Diagram Selection:**\n\n{justification_msg_content}\n\n*Generating initial PlantUML code for selected diagrams...*" elif func == SDLC.generate_initial_uml_codes: codes = updated_state.get('uml_current_codes', []) if codes: codes_display = "\n\n".join([f"**{c.diagram_type}**:\n```plantuml\n{c.code}\n```" for c in codes]) else: codes_display = "*No UML codes were generated.*" display_text = f"**Generated Initial PlantUML Codes:**\n\n{codes_display}\n\n*Generating AI feedback on these diagrams...*" elif func == SDLC.generate_uml_feedback: codes = updated_state.get('uml_current_codes', []) feedback_dict = updated_state.get('uml_feedback', {}) codes_display = "\n\n".join([f"**{c.diagram_type}**:\n```plantuml\n{c.code}\n```" for c in codes]) if codes else "*N/A*" feedback_display = "\n\n".join([f"**Feedback for {dt}:**\n{fb}" for dt, fb in feedback_dict.items()]) if feedback_dict else "*N/A*" display_text = f"**Current UML Codes:**\n{codes_display}\n---\n**AI Feedback on Diagrams:**\n{feedback_display}\n\n---\n*Provide your overall feedback or specific changes needed below.*" next_display_stage = "collect_uml_human_feedback" elif func == SDLC.refine_uml_codes: codes = updated_state.get('uml_current_codes', []) codes_display = "\n\n".join([f"**{c.diagram_type} (Refined):**\n```plantuml\n{c.code}\n```" for c in codes]) if codes else "*N/A*" display_text = f"**Refined UML Codes:**\n\n{codes_display}\n\n*Please review the refined diagrams. Choose 'Refine Further' or 'Approve & Proceed' below.*" next_display_stage = "collect_uml_decision" elif func == SDLC.generate_initial_code: code_data = updated_state.get("code_current", valid_default_code) # Use valid default here! files_display = [] total_len, max_len = 0, 4000 # Limit display length num_files = len(code_data.files) if code_data and code_data.files else 0 instr = code_data.instructions if code_data else "[Instructions not available]" if num_files > 0: for f in code_data.files: header = f"**File: {f.filename}**:\n```\n" footer = "\n```\n" # Calculate max content preview length safely max_content = max(0, max_len - total_len - len(header) - len(footer) - 50) # 50 char buffer content_preview = f.content[:max_content] if f.content else "" is_truncated = len(f.content) > len(content_preview) if f.content else False preview_str = f"{header}{content_preview}{'... (content truncated)' if is_truncated else ''}{footer}" files_display.append(preview_str) total_len += len(preview_str) if total_len >= max_len: files_display.append("\n*...(Code file display truncated due to length)*") break code_files_str = "".join(files_display) display_text = f"**Initial Code Generated ({num_files} file{'s' if num_files != 1 else ''}):**\n{code_files_str}\n---\n**Setup & Run Instructions:**\n```\n{instr}\n```\n\n---\n*Try to set up and run the code. Describe any errors or issues below.*" else: display_text = "Initial code generation step completed, but no code files were generated. This might indicate an issue with the request or the LLM's response.\n\n*Please describe the expected outcome or provide feedback below.*" logger.warning("generate_initial_code resulted in a valid GeneratedCode structure but with an empty file list.") next_display_stage = "collect_code_human_input" elif func == SDLC.web_search_code: results = updated_state.get('code_web_search_results', '*No web search results available.*') display_text = f"**Web Search Results (if applicable):**\n\n{results}\n\n*Generating AI feedback on the code, considering your input and these search results...*" elif func == SDLC.generate_code_feedback: ai_feedback = updated_state.get('code_feedback', '*N/A*') user_input = updated_state.get('code_human_input', None) # Get the input that triggered this context_header = "**Context Provided (User Input/Issue):**\n" if user_input else "" user_input_display = f"```\n{user_input}\n```\n---\n" if user_input else "" display_text = f"{context_header}{user_input_display}**AI Code Feedback:**\n\n{ai_feedback}\n\n---\n*Please provide your comments on the AI's feedback below (e.g., 'Yes, suggestion 1 seems right', 'No, the issue is actually in file X').*" next_display_stage = "collect_code_human_feedback" elif func == SDLC.refine_code: code_data = updated_state.get("code_current", valid_default_code) # Use valid default files_display=[]; total_len, max_len=0, 4000 num_files = len(code_data.files) if code_data else 0 instr = code_data.instructions if code_data else "[Instructions not available]" if num_files > 0: for f in code_data.files: header = f"**File: {f.filename} (Refined):**\n```\n"; footer = "\n```\n" max_content = max(0, max_len - total_len - len(header) - len(footer) - 50) content_preview = f.content[:max_content] if f.content else ""; is_truncated = len(f.content) > len(content_preview) if f.content else False preview_str = f"{header}{content_preview}{'... (content truncated)' if is_truncated else ''}{footer}" files_display.append(preview_str); total_len += len(preview_str) if total_len >= max_len: files_display.append("\n*...(Code file display truncated)*"); break code_files_str = "".join(files_display) display_text = f"**Refined Code ({num_files} file{'s' if num_files != 1 else ''}):**\n{code_files_str}\n---\n**Setup/Run Instructions:**\n```\n{instr}\n```\n\n---\n*Please review the refined code. Choose 'Refine Further' or 'Approve & Proceed' below.*" else: display_text = "Code refinement step completed, but no files were found in the result. This might indicate an error.\n\n*Choose 'Refine Further' to provide input or 'Approve & Proceed' if this is expected.*" logger.warning("refine_code resulted in a valid GeneratedCode structure but with an empty file list.") next_display_stage = "collect_code_decision" elif func == SDLC.security_check: # Display after security check completes (code review ran just before) review_fb = updated_state.get('code_review_current_feedback', '*Code review feedback not available.*') security_fb = updated_state.get('security_current_feedback', '*Security check feedback not available.*') display_text = f"**Code Review Findings:**\n```\n{review_fb}\n```\n---\n**Security Check Findings:**\n```\n{security_fb}\n```\n---\n*Please provide your overall feedback on these reports below (e.g., prioritize fixes, accept risks).*"; next_display_stage = "merge_review_security_feedback" # Stage to collect feedback on both reports elif func == SDLC.refine_code_with_reviews: code_data = updated_state.get("code_current", valid_default_code) # Use valid default files_display=[]; total_len, max_len=0, 4000 num_files = len(code_data.files) if code_data else 0 instr = code_data.instructions if code_data else "[Instructions not available]" if num_files > 0: for f in code_data.files: header = f"**File: {f.filename} (Post-Review/Security):**\n```\n"; footer = "\n```\n" max_content = max(0, max_len - total_len - len(header) - len(footer) - 50) content_preview = f.content[:max_content] if f.content else ""; is_truncated = len(f.content) > len(content_preview) if f.content else False preview_str = f"{header}{content_preview}{'... (content truncated)' if is_truncated else ''}{footer}" files_display.append(preview_str); total_len += len(preview_str) if total_len >= max_len: files_display.append("\n*...(Code file display truncated)*"); break code_files_str = "".join(files_display) display_text = f"**Code Refined Post-Review & Security ({num_files} file{'s' if num_files != 1 else ''}):**\n{code_files_str}\n---\n**Setup/Run Instructions:**\n```\n{instr}\n```\n\n---\n*This code incorporates feedback from the review cycle. Review the final code and decide below.*" else: display_text = "Code refinement post-review completed, but no files found. This likely indicates an error.\n\n*Choose 'Refine Further' (to restart review) or 'Approve & Proceed' if this was somehow expected.*" logger.error("refine_code_with_reviews resulted in an empty file list.") next_display_stage = "collect_review_security_decision" elif func == SDLC.generate_initial_test_cases: tests = updated_state.get('test_cases_current', []) tests_display = "\n\n".join([f"**Test: {tc.description}**\n - Input: `{tc.input_data}`\n - Expected Output: `{tc.expected_output}`" for tc in tests]) if tests else "*No test cases generated.*" display_text=f"**Generated Initial Test Cases ({len(tests)}):**\n\n{tests_display}\n\n*Generating AI feedback on these test cases...*" elif func == SDLC.generate_test_cases_feedback: tests = updated_state.get('test_cases_current', []) ai_feedback = updated_state.get('test_cases_feedback', '*N/A*') tests_display = "\n\n".join([f"**Test: {tc.description}**\n - Input: `{tc.input_data}`\n - Expected Output: `{tc.expected_output}`" for tc in tests]) if tests else "*N/A*" display_text=f"**Current Test Cases ({len(tests)}):**\n{tests_display}\n---\n**AI Feedback on Tests:**\n\n{ai_feedback}\n\n---\n*Please execute these tests against the code and report the results/feedback below.*"; next_display_stage = "collect_test_cases_human_feedback" elif func == SDLC.refine_test_cases_and_code: tests = updated_state.get('test_cases_current', []) code_data_after_test_refine = updated_state.get('code_current', valid_default_code) # Use valid default files_count = len(code_data_after_test_refine.files) if code_data_after_test_refine else 0 code_update_msg = f"Code ({files_count} files) and {len(tests)} test case(s) were refined based on test failures." if files_count > 0 else f"{len(tests)} Test case(s) refined (code may not have changed)." tests_display = "\n\n".join([f"**Test: {tc.description}**:\n - Input:`{tc.input_data}`\n - Expected:`{tc.expected_output}`" for tc in tests]) if tests else "*N/A*" display_text = f"**Refinement After Test Failure:**\n*{code_update_msg}*\n\n**Refined Tests ({len(tests)}):**\n{tests_display}\n\n*Please execute the tests again using the refined code and provide results/feedback below.*"; next_display_stage = "collect_test_cases_human_feedback" # Loop back to collect results again elif func == SDLC.save_testing_outputs: display_text = f"Testing cycle completed (PASS). Final tests and passed code snapshot saved.\n\n*Generating overall Quality Analysis report...*" elif func == SDLC.generate_initial_quality_analysis: report = updated_state.get('quality_current_analysis', '*N/A*') display_text=f"**Initial Quality Analysis Report Generated:**\n\n{report}\n\n*Generating AI feedback on this QA report...*" elif func == SDLC.generate_quality_feedback: current_report = updated_state.get('quality_current_analysis', '*N/A*') ai_feedback = updated_state.get('quality_feedback', '*N/A*') display_text=f"**Current QA Report:**\n```\n{current_report}\n```\n---\n**AI Feedback on QA Report:**\n\n{ai_feedback}\n\n---\n*Please provide your feedback on the QA report below.*"; next_display_stage = "collect_quality_human_feedback" elif func == SDLC.refine_quality_and_code: report = updated_state.get('quality_current_analysis', '*N/A*') code_data_qa_refined = updated_state.get('code_current', valid_default_code) # Use valid default code_files_exist = bool(code_data_qa_refined and code_data_qa_refined.files) code_update_msg = "*Minor, non-functional code polish may have been applied based on QA feedback.*" if code_files_exist else "*QA report refined (code unchanged).*" display_text=f"**Refined Quality Analysis Report:**\n\n{report}\n\n{code_update_msg}\n\n*Please review the final QA report. Choose 'Refine Further', 'Approve & Proceed', or 'Regenerate Code' below.*"; next_display_stage = "collect_quality_decision" elif func_name == "generate_initial_deployment": # Handle lambda name plan = updated_state.get('deployment_current_process', '*N/A*') # Retrieve prefs used from state if stored, otherwise use placeholder prefs_used = st.session_state.get('current_prefs', '[Preferences used previously, not displayed]') display_text = f"**Initial Deployment Plan Generated:**\n*Based on Preferences:*\n```\n{prefs_used}\n```\n*Generated Plan:*\n```markdown\n{plan}\n```\n\n*Generating AI feedback on this deployment plan...*"; elif func == SDLC.generate_deployment_feedback: current_plan = updated_state.get('deployment_current_process', '*N/A*') ai_feedback = updated_state.get('deployment_feedback', '*N/A*') display_text=f"**Current Deployment Plan:**\n```markdown\n{current_plan}\n```\n---\n**AI Feedback on Plan:**\n\n{ai_feedback}\n\n---\n*Please provide your feedback or required changes for the deployment plan below.*"; next_display_stage = "collect_deployment_human_feedback" elif func == SDLC.refine_deployment: plan = updated_state.get('deployment_current_process', '*N/A*') display_text = f"**Refined Deployment Plan:**\n```markdown\n{plan}\n```\n\n*Please review the refined deployment plan. Choose 'Refine Further' or 'Approve & Proceed' below.*"; next_display_stage = "collect_deployment_decision" # Display logic for save functions elif func in [SDLC.save_final_user_story, SDLC.save_final_product_review, SDLC.save_final_design_doc, SDLC.save_final_uml_diagrams, SDLC.save_review_security_outputs, SDLC.save_testing_outputs, SDLC.save_final_quality_analysis, SDLC.save_final_deployment_plan]: # Determine artifact name from function name artifact_name = func.__name__.replace('save_final_','').replace('_',' ').title() # Determine next major action/cycle name next_action_stage = next_display_stage # The stage name provided to run_workflow_step next_action_cycle = STAGE_TO_CYCLE.get(next_action_stage, next_action_stage).replace('_',' ').title() # Special case names for clarity if next_action_stage == "generate_initial_deployment": next_action_name = "Deployment Preferences Input" elif next_action_stage == "END": next_action_name = "Workflow End" else: next_action_name = f"{next_action_cycle} Cycle" display_text = f"✅ **{artifact_name} saved successfully.**\n\n*Proceeding to: {next_action_name}...*" logger.info(f"Artifact saved: {artifact_name}. Next step starts stage: {next_action_stage}") # --- Update UI Display and Transition Stage --- update_display(display_text) st.session_state.stage = next_display_stage logger.info(f"Completed step '{func_name}'. UI transitioning to stage '{next_display_stage}'.") st.rerun() # Rerun Streamlit to reflect the changes # --- Error Handling --- except ConnectionError as ce: error_msg = f"Connection Error during step '{func_name}': {ce}. Please check your API keys, network connection, and service status." st.error(error_msg) logger.critical(error_msg, exc_info=False) # Log as critical, but maybe don't need full traceback always # Optionally add a retry button here specific to connection errors if desired except pydantic_core.ValidationError as pve: # Handle Pydantic errors (often from LLM structured output) gracefully error_details = str(pve) logger.error(f"Data Validation Error in step '{func_name}': {error_details}", exc_info=True) # Check if it's the specific error related to the default GeneratedCode if "GeneratedCode" in error_details and "instructions" in error_details and "Field required" in error_details: error_msg = f"Internal Application Error: Failed processing a code object during step '{func_name}', likely due to a missing default value in the application code. Please report this issue. Details: {error_details}" st.error(error_msg) # Halt here as it's an app logic issue needing a fix in app.py st.stop() else: # General Pydantic error error_msg = f"Data Validation Error during step '{func_name}': The AI's response did not match the expected format. Details: {error_details}" st.error(error_msg) # Offer retry for general validation errors retry_key_pve = f"retry_btn_pve_{func_name}_{int(time.time())}" if st.button("Retry Last Step", key=retry_key_pve): logger.info(f"User initiated retry after Pydantic error in {func_name}.") st.rerun() except TypeError as te: # TypeErrors often indicate programming errors (e.g., wrong argument types) error_msg = f"Type Error during step '{func_name}': {te}. This might indicate an internal application issue." st.error(error_msg) logger.error(f"TypeError executing step '{func_name}': {te}", exc_info=True) st.stop() # Halt on TypeErrors as they usually require code fixes except ValueError as ve: # ValueErrors can be raised by backend logic for specific input issues error_msg = f"Input Error during step '{func_name}': {ve}. Please check the inputs or previous steps." st.error(error_msg) logger.error(f"ValueError executing step '{func_name}': {ve}", exc_info=True) # Offer retry for ValueErrors as they might be transient or fixable by adjusting input retry_key_ve = f"retry_btn_ve_{func_name}_{int(time.time())}" if st.button("Retry Last Step", key=retry_key_ve): logger.info(f"User initiated retry after ValueError in {func_name}.") st.rerun() except Exception as e: # Catch-all for other unexpected errors error_msg = f"An unexpected error occurred during step '{func_name}': {e}" st.error(error_msg) logger.error(f"Unexpected error executing step '{func_name}': {e}", exc_info=True) # Offer retry for general exceptions retry_key_exc = f"retry_btn_exc_{func_name}_{int(time.time())}" # Ensure unique key if st.button("Retry Last Step", key=retry_key_exc): logger.info(f"User initiated retry after general exception in {func_name}.") st.rerun() # ============================================================================== # --- Workflow Map Definition --- # Maps "run_*" stages to their backend function and the next UI stage # ============================================================================== workflow_map = { # Requirements Cycle "run_generate_questions": (SDLC.generate_questions, "collect_answers"), "run_refine_prompt": (SDLC.refine_prompt, "run_generate_initial_user_stories"), # End of Requirements # User Story Cycle "run_generate_initial_user_stories": (SDLC.generate_initial_user_stories, "run_generate_user_story_feedback"), "run_generate_user_story_feedback": (SDLC.generate_user_story_feedback, "collect_user_story_human_feedback"), "run_refine_user_stories": (SDLC.refine_user_stories, "collect_user_story_decision"), # Product Review Cycle "run_generate_initial_product_review": (SDLC.generate_initial_product_review, "run_generate_product_review_feedback"), "run_generate_product_review_feedback": (SDLC.generate_product_review_feedback, "collect_product_review_human_feedback"), "run_refine_product_review": (SDLC.refine_product_review, "collect_product_review_decision"), # Design Cycle "run_generate_initial_design_doc": (SDLC.generate_initial_design_doc, "run_generate_design_doc_feedback"), "run_generate_design_doc_feedback": (SDLC.generate_design_doc_feedback, "collect_design_doc_human_feedback"), "run_refine_design_doc": (SDLC.refine_design_doc, "collect_design_doc_decision"), # UML Cycle "run_select_uml_diagrams": (SDLC.select_uml_diagrams, "run_generate_initial_uml_codes"), "run_generate_initial_uml_codes": (SDLC.generate_initial_uml_codes, "run_generate_uml_feedback"), "run_generate_uml_feedback": (SDLC.generate_uml_feedback, "collect_uml_human_feedback"), "run_refine_uml_codes": (SDLC.refine_uml_codes, "collect_uml_decision"), # Code Generation Cycle "run_generate_initial_code": (SDLC.generate_initial_code, "collect_code_human_input"), "run_web_search_code": (SDLC.web_search_code, "run_generate_code_feedback"), # Handled specially in run_workflow_step if skipped "run_generate_code_feedback": (SDLC.generate_code_feedback, "collect_code_human_feedback"), "run_refine_code": (SDLC.refine_code, "collect_code_decision"), # Review & Security Cycle "run_code_review": (SDLC.code_review, "run_security_check"), # Special handling: runs review then triggers security check "run_security_check": (SDLC.security_check, "merge_review_security_feedback"), # Displays both reports, waits for feedback "run_refine_code_with_reviews": (SDLC.refine_code_with_reviews, "collect_review_security_decision"), # Testing Cycle "run_generate_initial_test_cases": (SDLC.generate_initial_test_cases, "run_generate_test_cases_feedback"), "run_generate_test_cases_feedback": (SDLC.generate_test_cases_feedback, "collect_test_cases_human_feedback"), "run_refine_test_cases_and_code": (SDLC.refine_test_cases_and_code, "collect_test_cases_human_feedback"), # Loop back to test execution "run_save_testing_outputs": (SDLC.save_testing_outputs, "run_generate_initial_quality_analysis"), # End of Testing # Quality Analysis Cycle "run_generate_initial_quality_analysis": (SDLC.generate_initial_quality_analysis, "run_generate_quality_feedback"), "run_generate_quality_feedback": (SDLC.generate_quality_feedback, "collect_quality_human_feedback"), "run_refine_quality_and_code": (SDLC.refine_quality_and_code, "collect_quality_decision"), # Deployment Cycle "run_generate_initial_deployment": ( lambda state: SDLC.generate_initial_deployment(state, st.session_state.get('current_prefs', '')), # Pass prefs via lambda "run_generate_deployment_feedback" ), "run_generate_deployment_feedback": (SDLC.generate_deployment_feedback, "collect_deployment_human_feedback"), "run_refine_deployment": (SDLC.refine_deployment, "collect_deployment_decision"), } # ============================================================================== # --- Main Execution Logic --- # Checks the current stage and runs the corresponding backend function if it's a "run_" stage. # ============================================================================== if st.session_state.get('config_applied', False): current_stage_to_run = st.session_state.stage # Get the current stage # Check if the stage indicates a background processing step if current_stage_to_run.startswith("run_"): if current_stage_to_run in workflow_map: # Retrieve the function and the next UI stage from the map func_to_execute, next_ui_stage = workflow_map[current_stage_to_run] # Call the central execution function run_workflow_step(func_to_execute, next_ui_stage) else: # This indicates a potential error in the workflow definition or state st.error(f"Internal Error: Unknown processing stage '{current_stage_to_run}' encountered. Workflow cannot proceed. Please restart.") logger.critical(f"Workflow halted at unknown 'run_' stage: {current_stage_to_run}. Check workflow_map definition.") # Optionally force a reset or stop execution # initialize_state() # st.rerun() st.stop() # elif current_stage_to_run == "END": # Handled within the main column display logic # pass # No processing needed for END stage # else: # Stage is likely an input/decision stage, handled by the UI widgets above # pass # Display warning if configuration hasn't been applied, unless at the very start elif st.session_state.stage != "initial_setup": logger.warning("Workflow cannot proceed because configuration has not been applied.") # Warning is already displayed in the main column section