Spaces:
Runtime error
Runtime error
File size: 7,206 Bytes
427863b ba33fd4 427863b ba33fd4 427863b ba33fd4 427863b ba33fd4 427863b ba33fd4 427863b ba33fd4 427863b ba33fd4 427863b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
!pip install langchain-community # Install the missing module
import streamlit as st
import logging
import os
import tempfile
import shutil
import pdfplumber
import ollama
from langchain_community.document_loaders import UnstructuredPDFLoader
from langchain_community.embeddings import OllamaEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.prompts import ChatPromptTemplate, PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_community.chat_models import ChatOllama
from langchain_core.runnables import RunnablePassthrough
from langchain.retrievers.multi_query import MultiQueryRetriever
from typing import List, Tuple, Dict, Any, Optional
# Streamlit page configuration
st.set_page_config(
page_title="Ollama PDF RAG Streamlit UI",
page_icon="π",
layout="wide",
initial_sidebar_state="collapsed",
)
# Logging configuration
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
logger = logging.getLogger(__name__)
@st.cache_resource(show_spinner=True)
def extract_model_names(
models_info: Dict[str, List[Dict[str, Any]]],
) -> Tuple[str, ...]:
"""Extract model names from the provided models information."""
logger.info("Extracting model names from models_info")
model_names = tuple(model["name"] for model in models_info["models"])
logger.info(f"Extracted model names: {model_names}")
return model_names
def create_vector_db(file_upload) -> Chroma:
"""Create a vector database from an uploaded PDF file."""
logger.info(f"Creating vector DB from file upload: {file_upload.name}")
temp_dir = tempfile.mkdtemp()
path = os.path.join(temp_dir, file_upload.name)
with open(path, "wb") as f:
f.write(file_upload.getvalue())
logger.info(f"File saved to temporary path: {path}")
loader = UnstructuredPDFLoader(path)
data = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=7500, chunk_overlap=100)
chunks = text_splitter.split_documents(data)
logger.info("Document split into chunks")
embeddings = OllamaEmbeddings(model="nomic-embed-text", show_progress=True)
vector_db = Chroma.from_documents(
documents=chunks, embedding=embeddings, collection_name="myRAG"
)
logger.info("Vector DB created")
shutil.rmtree(temp_dir)
logger.info(f"Temporary directory {temp_dir} removed")
return vector_db
def process_question(question: str, vector_db: Chroma, selected_model: str) -> str:
"""Process a user question using the vector database and selected language model."""
logger.info(f"Processing question: {question} using model: {selected_model}")
llm = ChatOllama(model=selected_model, temperature=0)
QUERY_PROMPT = PromptTemplate(
input_variables=["question"],
template="""You are an AI language model assistant. Your task is to generate 3
different versions of the given user question to retrieve relevant documents from
a vector database. By generating multiple perspectives on the user question, your
goal is to help the user overcome some of the limitations of the distance-based
similarity search. Provide these alternative questions separated by newlines.
Original question: {question}""",
)
retriever = MultiQueryRetriever.from_llm(
vector_db.as_retriever(), llm, prompt=QUERY_PROMPT
)
template = """Answer the question based ONLY on the following context:
{context}
Question: {question}
If you don't know the answer, just say that you don't know, don't try to make up an answer.
Only provide the answer from the {context}, nothing else.
Add snippets of the context you used to answer the question.
"""
prompt = ChatPromptTemplate.from_template(template)
chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
response = chain.invoke(question)
logger.info("Question processed and response generated")
return response
@st.cache_data
def extract_all_pages_as_images(file_upload) -> List[Any]:
"""Extract all pages from a PDF file as images."""
logger.info(f"Extracting all pages as images from file: {file_upload.name}")
pdf_pages = []
with pdfplumber.open(file_upload) as pdf:
pdf_pages = [page.to_image().original for page in pdf.pages]
logger.info("PDF pages extracted as images")
return pdf_pages
def delete_vector_db(vector_db: Optional[Chroma]) -> None:
"""Delete the vector database and clear related session state."""
logger.info("Deleting vector DB")
if vector_db is not None:
vector_db.delete_collection()
st.session_state.pop("pdf_pages", None)
st.session_state.pop("file_upload", None)
st.session_state.pop("vector_db", None)
st.success("Collection and temporary files deleted successfully.")
logger.info("Vector DB and related session state cleared")
st.rerun()
else:
st.error("No vector database found to delete.")
logger.warning("Attempted to delete vector DB, but none was found")
def main() -> None:
"""Main function to run the Streamlit application."""
st.subheader("π§ Ollama PDF RAG playground", divider="gray", anchor=False)
models_info = ollama.list()
available_models = extract_model_names(models_info)
col1, col2 = st.columns([1.5, 2])
if "messages" not in st.session_state:
st.session_state["messages"] = []
if "vector_db" not in st.session_state:
st.session_state["vector_db"] = None
if available_models:
selected_model = col2.selectbox(
"Pick a model available locally on your system β", available_models
)
file_upload = col1.file_uploader(
"Upload a PDF file β", type="pdf", accept_multiple_files=False
)
if file_upload:
st.session_state["file_upload"] = file_upload
if st.session_state["vector_db"] is None:
st.session_state["vector_db"] = create_vector_db(file_upload)
pdf_pages = extract_all_pages_as_images(file_upload)
st.session_state["pdf_pages"] = pdf_pages
zoom_level = col1.slider(
"Zoom Level", min_value=100, max_value=1000, value=700, step=50
)
with col1:
with st.container(height=410, border=True):
for page_image in pdf_pages:
st.image(page_image, width=zoom_level)
delete_collection = col1.button("β οΈ Delete collection", type="secondary")
if delete_collection:
delete_vector_db(st.session_state["vector_db"])
with col2:
message_container = st.container(height=500, border=True)
for message in st.session_state["messages"]:
avatar = "π€" if message["role"] == "assistant" else "π"
with message_container.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
|