File size: 9,846 Bytes
ba33fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
"""
Streamlit application for PDF-based Retrieval-Augmented Generation (RAG) using Ollama + LangChain.

This application allows users to upload a PDF, process it,
and then ask questions about the content using a selected language model.
"""

import streamlit as st
import logging
import os
import tempfile
import shutil
import pdfplumber
import ollama

from langchain_community.document_loaders import UnstructuredPDFLoader
from langchain_community.embeddings import OllamaEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.prompts import ChatPromptTemplate, PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_community.chat_models import ChatOllama
from langchain_core.runnables import RunnablePassthrough
from langchain.retrievers.multi_query import MultiQueryRetriever
from typing import List, Tuple, Dict, Any, Optional

# Streamlit page configuration
st.set_page_config(
    page_title="Ollama PDF RAG Streamlit UI",
    page_icon="🎈",
    layout="wide",
    initial_sidebar_state="collapsed",
)

# Logging configuration
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
)

logger = logging.getLogger(__name__)


@st.cache_resource(show_spinner=True)
def extract_model_names(
    models_info: Dict[str, List[Dict[str, Any]]],
) -> Tuple[str, ...]:
    """
    Extract model names from the provided models information.

    Args:
        models_info (Dict[str, List[Dict[str, Any]]]): Dictionary containing information about available models.

    Returns:
        Tuple[str, ...]: A tuple of model names.
    """
    logger.info("Extracting model names from models_info")
    model_names = tuple(model["name"] for model in models_info["models"])
    logger.info(f"Extracted model names: {model_names}")
    return model_names


def create_vector_db(file_upload) -> Chroma:
    """
    Create a vector database from an uploaded PDF file.

    Args:
        file_upload (st.UploadedFile): Streamlit file upload object containing the PDF.

    Returns:
        Chroma: A vector store containing the processed document chunks.
    """
    logger.info(f"Creating vector DB from file upload: {file_upload.name}")
    temp_dir = tempfile.mkdtemp()

    path = os.path.join(temp_dir, file_upload.name)
    with open(path, "wb") as f:
        f.write(file_upload.getvalue())
        logger.info(f"File saved to temporary path: {path}")
        loader = UnstructuredPDFLoader(path)
        data = loader.load()

    text_splitter = RecursiveCharacterTextSplitter(chunk_size=7500, chunk_overlap=100)
    chunks = text_splitter.split_documents(data)
    logger.info("Document split into chunks")

    embeddings = OllamaEmbeddings(model="nomic-embed-text", show_progress=True)
    vector_db = Chroma.from_documents(
        documents=chunks, embedding=embeddings, collection_name="myRAG"
    )
    logger.info("Vector DB created")

    shutil.rmtree(temp_dir)
    logger.info(f"Temporary directory {temp_dir} removed")
    return vector_db


def process_question(question: str, vector_db: Chroma, selected_model: str) -> str:
    """
    Process a user question using the vector database and selected language model.

    Args:
        question (str): The user's question.
        vector_db (Chroma): The vector database containing document embeddings.
        selected_model (str): The name of the selected language model.

    Returns:
        str: The generated response to the user's question.
    """
    logger.info(f"""Processing question: {
                question} using model: {selected_model}""")
    llm = ChatOllama(model=selected_model, temperature=0)
    QUERY_PROMPT = PromptTemplate(
        input_variables=["question"],
        template="""You are an AI language model assistant. Your task is to generate 3
        different versions of the given user question to retrieve relevant documents from
        a vector database. By generating multiple perspectives on the user question, your
        goal is to help the user overcome some of the limitations of the distance-based
        similarity search. Provide these alternative questions separated by newlines.
        Original question: {question}""",
    )

    retriever = MultiQueryRetriever.from_llm(
        vector_db.as_retriever(), llm, prompt=QUERY_PROMPT
    )

    template = """Answer the question based ONLY on the following context:
    {context}
    Question: {question}
    If you don't know the answer, just say that you don't know, don't try to make up an answer.
    Only provide the answer from the {context}, nothing else.
    Add snippets of the context you used to answer the question.
    """

    prompt = ChatPromptTemplate.from_template(template)

    chain = (
        {"context": retriever, "question": RunnablePassthrough()}
        | prompt
        | llm
        | StrOutputParser()
    )

    response = chain.invoke(question)
    logger.info("Question processed and response generated")
    return response


@st.cache_data
def extract_all_pages_as_images(file_upload) -> List[Any]:
    """
    Extract all pages from a PDF file as images.

    Args:
        file_upload (st.UploadedFile): Streamlit file upload object containing the PDF.

    Returns:
        List[Any]: A list of image objects representing each page of the PDF.
    """
    logger.info(f"""Extracting all pages as images from file: {
                file_upload.name}""")
    pdf_pages = []
    with pdfplumber.open(file_upload) as pdf:
        pdf_pages = [page.to_image().original for page in pdf.pages]
    logger.info("PDF pages extracted as images")
    return pdf_pages


def delete_vector_db(vector_db: Optional[Chroma]) -> None:
    """
    Delete the vector database and clear related session state.

    Args:
        vector_db (Optional[Chroma]): The vector database to be deleted.
    """
    logger.info("Deleting vector DB")
    if vector_db is not None:
        vector_db.delete_collection()
        st.session_state.pop("pdf_pages", None)
        st.session_state.pop("file_upload", None)
        st.session_state.pop("vector_db", None)
        st.success("Collection and temporary files deleted successfully.")
        logger.info("Vector DB and related session state cleared")
        st.rerun()
    else:
        st.error("No vector database found to delete.")
        logger.warning("Attempted to delete vector DB, but none was found")


def main() -> None:
    """
    Main function to run the Streamlit application.

    This function sets up the user interface, handles file uploads,
    processes user queries, and displays results.
    """
    st.subheader("🧠 Ollama PDF RAG playground", divider="gray", anchor=False)

    models_info = ollama.list()
    available_models = extract_model_names(models_info)

    col1, col2 = st.columns([1.5, 2])

    if "messages" not in st.session_state:
        st.session_state["messages"] = []

    if "vector_db" not in st.session_state:
        st.session_state["vector_db"] = None

    if available_models:
        selected_model = col2.selectbox(
            "Pick a model available locally on your system ↓", available_models
        )

    file_upload = col1.file_uploader(
        "Upload a PDF file ↓", type="pdf", accept_multiple_files=False
    )

    if file_upload:
        st.session_state["file_upload"] = file_upload
        if st.session_state["vector_db"] is None:
            st.session_state["vector_db"] = create_vector_db(file_upload)
        pdf_pages = extract_all_pages_as_images(file_upload)
        st.session_state["pdf_pages"] = pdf_pages

        zoom_level = col1.slider(
            "Zoom Level", min_value=100, max_value=1000, value=700, step=50
        )

        with col1:
            with st.container(height=410, border=True):
                for page_image in pdf_pages:
                    st.image(page_image, width=zoom_level)

    delete_collection = col1.button("⚠️ Delete collection", type="secondary")

    if delete_collection:
        delete_vector_db(st.session_state["vector_db"])

    with col2:
        message_container = st.container(height=500, border=True)

        for message in st.session_state["messages"]:
            avatar = "πŸ€–" if message["role"] == "assistant" else "😎"
            with message_container.chat_message(message["role"], avatar=avatar):
                st.markdown(message["content"])

        if prompt := st.chat_input("Enter a prompt here..."):
            try:
                st.session_state["messages"].append({"role": "user", "content": prompt})
                message_container.chat_message("user", avatar="😎").markdown(prompt)

                with message_container.chat_message("assistant", avatar="πŸ€–"):
                    with st.spinner(":green[processing...]"):
                        if st.session_state["vector_db"] is not None:
                            response = process_question(
                                prompt, st.session_state["vector_db"], selected_model
                            )
                            st.markdown(response)
                        else:
                            st.warning("Please upload a PDF file first.")

                if st.session_state["vector_db"] is not None:
                    st.session_state["messages"].append(
                        {"role": "assistant", "content": response}
                    )

            except Exception as e:
                st.error(e, icon="⛔️")
                logger.error(f"Error processing prompt: {e}")
        else:
            if st.session_state["vector_db"] is None:
                st.warning("Upload a PDF file to begin chat...")


if __name__ == "__main__":
    main()