Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,15 +2,48 @@ from dotenv import load_dotenv
|
|
2 |
import streamlit as st
|
3 |
import pickle
|
4 |
from PyPDF2 import PdfReader
|
5 |
-
from
|
6 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
-
from langchain.vectorstores import FAISS
|
8 |
-
from transformers import pipeline
|
9 |
import os
|
|
|
|
|
10 |
|
11 |
# Load environment variables from .env file
|
12 |
load_dotenv()
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def main():
|
15 |
st.header("LLM-powered PDF Chatbot 💬")
|
16 |
|
@@ -19,43 +52,41 @@ def main():
|
|
19 |
|
20 |
if pdf is not None:
|
21 |
pdf_reader = PdfReader(pdf)
|
22 |
-
|
23 |
text = ""
|
24 |
for page in pdf_reader.pages:
|
25 |
text += page.extract_text()
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
chunk_overlap=200,
|
30 |
-
length_function=len
|
31 |
-
)
|
32 |
-
chunks = text_splitter.split_text(text=text)
|
33 |
|
34 |
-
#
|
35 |
store_name = pdf.name[:-4]
|
36 |
st.write(f'{store_name}')
|
37 |
|
38 |
if os.path.exists(f"{store_name}.pkl"):
|
39 |
with open(f"{store_name}.pkl", "rb") as f:
|
40 |
-
|
41 |
st.write('Embeddings Loaded from the Disk')
|
42 |
else:
|
43 |
-
|
44 |
-
VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
|
45 |
with open(f"{store_name}.pkl", "wb") as f:
|
46 |
-
pickle.dump(
|
47 |
|
48 |
# Accept user questions/query
|
49 |
query = st.text_input("Ask questions about your PDF file:")
|
50 |
|
51 |
if query:
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
# Use Hugging Face pipeline for question answering
|
55 |
-
|
56 |
-
|
57 |
-
context = " ".join([doc.page_content for doc in docs])
|
58 |
-
result = qa_pipeline(question=query, context=context)
|
59 |
st.write(result['answer'])
|
60 |
|
61 |
if __name__ == '__main__':
|
|
|
2 |
import streamlit as st
|
3 |
import pickle
|
4 |
from PyPDF2 import PdfReader
|
5 |
+
from transformers import pipeline, AutoTokenizer, AutoModel
|
|
|
|
|
|
|
6 |
import os
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
|
10 |
# Load environment variables from .env file
|
11 |
load_dotenv()
|
12 |
|
13 |
+
# Define a function to manually chunk text
|
14 |
+
def chunk_text(text, chunk_size=1000, chunk_overlap=200):
|
15 |
+
chunks = []
|
16 |
+
i = 0
|
17 |
+
while i < len(text):
|
18 |
+
# Ensure chunk size and overlap are handled properly
|
19 |
+
chunks.append(text[i:i + chunk_size])
|
20 |
+
i += chunk_size - chunk_overlap
|
21 |
+
return chunks
|
22 |
+
|
23 |
+
# Function to generate embeddings using transformers
|
24 |
+
def generate_embeddings(text_chunks, model_name='sentence-transformers/all-MiniLM-L6-v2'):
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
26 |
+
model = AutoModel.from_pretrained(model_name)
|
27 |
+
|
28 |
+
embeddings = []
|
29 |
+
for text in text_chunks:
|
30 |
+
# Tokenize the text and generate embeddings
|
31 |
+
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
32 |
+
with torch.no_grad():
|
33 |
+
outputs = model(**inputs)
|
34 |
+
# Mean pooling on the last hidden state
|
35 |
+
embeddings.append(outputs.last_hidden_state.mean(dim=1).squeeze().numpy())
|
36 |
+
return embeddings
|
37 |
+
|
38 |
+
# Function to find the most relevant chunk based on the cosine similarity
|
39 |
+
def find_best_chunk(query_embedding, text_embeddings):
|
40 |
+
cosine_similarities = np.dot(text_embeddings, query_embedding) / (
|
41 |
+
np.linalg.norm(text_embeddings, axis=1) * np.linalg.norm(query_embedding)
|
42 |
+
)
|
43 |
+
best_index = np.argmax(cosine_similarities)
|
44 |
+
return best_index, cosine_similarities[best_index]
|
45 |
+
|
46 |
+
# Main Streamlit app function
|
47 |
def main():
|
48 |
st.header("LLM-powered PDF Chatbot 💬")
|
49 |
|
|
|
52 |
|
53 |
if pdf is not None:
|
54 |
pdf_reader = PdfReader(pdf)
|
55 |
+
|
56 |
text = ""
|
57 |
for page in pdf_reader.pages:
|
58 |
text += page.extract_text()
|
59 |
|
60 |
+
# Split text into chunks
|
61 |
+
chunks = chunk_text(text)
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
# Generate embeddings for the chunks
|
64 |
store_name = pdf.name[:-4]
|
65 |
st.write(f'{store_name}')
|
66 |
|
67 |
if os.path.exists(f"{store_name}.pkl"):
|
68 |
with open(f"{store_name}.pkl", "rb") as f:
|
69 |
+
text_embeddings = pickle.load(f)
|
70 |
st.write('Embeddings Loaded from the Disk')
|
71 |
else:
|
72 |
+
text_embeddings = generate_embeddings(chunks)
|
|
|
73 |
with open(f"{store_name}.pkl", "wb") as f:
|
74 |
+
pickle.dump(text_embeddings, f)
|
75 |
|
76 |
# Accept user questions/query
|
77 |
query = st.text_input("Ask questions about your PDF file:")
|
78 |
|
79 |
if query:
|
80 |
+
# Generate embeddings for the query
|
81 |
+
query_embedding = generate_embeddings([query])[0]
|
82 |
+
|
83 |
+
# Find the best chunk for the query
|
84 |
+
best_index, similarity = find_best_chunk(query_embedding, text_embeddings)
|
85 |
+
best_chunk = chunks[best_index]
|
86 |
|
87 |
# Use Hugging Face pipeline for question answering
|
88 |
+
qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
89 |
+
result = qa_pipeline(question=query, context=best_chunk)
|
|
|
|
|
90 |
st.write(result['answer'])
|
91 |
|
92 |
if __name__ == '__main__':
|