Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,76 +1,71 @@
|
|
1 |
-
import streamlit as st
|
2 |
from dotenv import load_dotenv
|
|
|
3 |
import pickle
|
4 |
from PyPDF2 import PdfReader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from langchain.embeddings
|
7 |
from langchain.vectorstores import FAISS
|
8 |
-
from langchain.llms import
|
9 |
from langchain.chains.question_answering import load_qa_chain
|
10 |
from langchain.callbacks import get_openai_callback
|
11 |
import os
|
12 |
-
|
|
|
13 |
load_dotenv()
|
14 |
-
|
15 |
def main():
|
16 |
st.header("LLM-powered PDF Chatbot 💬")
|
17 |
-
|
18 |
-
|
19 |
-
# upload a PDF file
|
20 |
pdf = st.file_uploader("Upload your PDF", type='pdf')
|
21 |
-
|
22 |
-
# st.write(pdf)
|
23 |
if pdf is not None:
|
24 |
pdf_reader = PdfReader(pdf)
|
25 |
|
26 |
text = ""
|
27 |
for page in pdf_reader.pages:
|
28 |
text += page.extract_text()
|
29 |
-
|
30 |
text_splitter = RecursiveCharacterTextSplitter(
|
31 |
chunk_size=1000,
|
32 |
chunk_overlap=200,
|
33 |
length_function=len
|
34 |
-
|
35 |
chunks = text_splitter.split_text(text=text)
|
36 |
-
|
37 |
-
#
|
38 |
store_name = pdf.name[:-4]
|
39 |
st.write(f'{store_name}')
|
40 |
-
|
41 |
-
|
42 |
if os.path.exists(f"{store_name}.pkl"):
|
43 |
with open(f"{store_name}.pkl", "rb") as f:
|
44 |
VectorStore = pickle.load(f)
|
45 |
-
|
46 |
else:
|
47 |
-
embeddings =
|
48 |
VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
|
49 |
with open(f"{store_name}.pkl", "wb") as f:
|
50 |
pickle.dump(VectorStore, f)
|
51 |
-
|
52 |
-
# embeddings = OpenAIEmbeddings()
|
53 |
-
# VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
|
54 |
-
|
55 |
# Accept user questions/query
|
56 |
query = st.text_input("Ask questions about your PDF file:")
|
57 |
-
|
58 |
-
|
59 |
if query:
|
60 |
docs = VectorStore.similarity_search(query=query, k=3)
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
chain = load_qa_chain(llm=llm, chain_type="stuff")
|
64 |
with get_openai_callback() as cb:
|
65 |
response = chain.run(input_documents=docs, question=query)
|
66 |
print(cb)
|
67 |
st.write(response)
|
68 |
-
|
69 |
if __name__ == '__main__':
|
70 |
main()
|
71 |
-
|
72 |
def set_bg_from_url(url, opacity=1):
|
73 |
-
|
74 |
footer = """
|
75 |
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-gH2yIJqKdNHPEq0n4Mqa/HGKIhSkIHeL5AyhkYV8i59U5AR6csBvApHHNl/vI1Bx" crossorigin="anonymous">
|
76 |
<footer>
|
@@ -92,10 +87,9 @@ def set_bg_from_url(url, opacity=1):
|
|
92 |
</p>
|
93 |
</div>
|
94 |
</footer>
|
95 |
-
"""
|
96 |
st.markdown(footer, unsafe_allow_html=True)
|
97 |
-
|
98 |
-
|
99 |
# Set background image using HTML and CSS
|
100 |
st.markdown(
|
101 |
f"""
|
@@ -111,4 +105,4 @@ def set_bg_from_url(url, opacity=1):
|
|
111 |
)
|
112 |
|
113 |
# Set background image from URL
|
114 |
-
set_bg_from_url("https://www.1access.com/wp-content/uploads/2019/10/GettyImages-1180389186.jpg", opacity=0.875)
|
|
|
|
|
1 |
from dotenv import load_dotenv
|
2 |
+
import streamlit as st
|
3 |
import pickle
|
4 |
from PyPDF2 import PdfReader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain.vectorstores import FAISS
|
8 |
+
from langchain.llms import HuggingFace
|
9 |
from langchain.chains.question_answering import load_qa_chain
|
10 |
from langchain.callbacks import get_openai_callback
|
11 |
import os
|
12 |
+
|
13 |
+
# Load environment variables from .env file
|
14 |
load_dotenv()
|
15 |
+
|
16 |
def main():
|
17 |
st.header("LLM-powered PDF Chatbot 💬")
|
18 |
+
|
19 |
+
# Upload a PDF file
|
|
|
20 |
pdf = st.file_uploader("Upload your PDF", type='pdf')
|
21 |
+
|
|
|
22 |
if pdf is not None:
|
23 |
pdf_reader = PdfReader(pdf)
|
24 |
|
25 |
text = ""
|
26 |
for page in pdf_reader.pages:
|
27 |
text += page.extract_text()
|
28 |
+
|
29 |
text_splitter = RecursiveCharacterTextSplitter(
|
30 |
chunk_size=1000,
|
31 |
chunk_overlap=200,
|
32 |
length_function=len
|
33 |
+
)
|
34 |
chunks = text_splitter.split_text(text=text)
|
35 |
+
|
36 |
+
# Process and store embeddings
|
37 |
store_name = pdf.name[:-4]
|
38 |
st.write(f'{store_name}')
|
39 |
+
|
|
|
40 |
if os.path.exists(f"{store_name}.pkl"):
|
41 |
with open(f"{store_name}.pkl", "rb") as f:
|
42 |
VectorStore = pickle.load(f)
|
43 |
+
st.write('Embeddings Loaded from the Disk')
|
44 |
else:
|
45 |
+
embeddings = HuggingFaceEmbeddings()
|
46 |
VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
|
47 |
with open(f"{store_name}.pkl", "wb") as f:
|
48 |
pickle.dump(VectorStore, f)
|
49 |
+
|
|
|
|
|
|
|
50 |
# Accept user questions/query
|
51 |
query = st.text_input("Ask questions about your PDF file:")
|
52 |
+
|
|
|
53 |
if query:
|
54 |
docs = VectorStore.similarity_search(query=query, k=3)
|
55 |
+
|
56 |
+
# Use Hugging Face model for question answering
|
57 |
+
model_name = "distilbert-base-uncased-distilled-squad" # Example model
|
58 |
+
llm = HuggingFace(model_name=model_name)
|
59 |
chain = load_qa_chain(llm=llm, chain_type="stuff")
|
60 |
with get_openai_callback() as cb:
|
61 |
response = chain.run(input_documents=docs, question=query)
|
62 |
print(cb)
|
63 |
st.write(response)
|
64 |
+
|
65 |
if __name__ == '__main__':
|
66 |
main()
|
67 |
+
|
68 |
def set_bg_from_url(url, opacity=1):
|
|
|
69 |
footer = """
|
70 |
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-gH2yIJqKdNHPEq0n4Mqa/HGKIhSkIHeL5AyhkYV8i59U5AR6csBvApHHNl/vI1Bx" crossorigin="anonymous">
|
71 |
<footer>
|
|
|
87 |
</p>
|
88 |
</div>
|
89 |
</footer>
|
90 |
+
"""
|
91 |
st.markdown(footer, unsafe_allow_html=True)
|
92 |
+
|
|
|
93 |
# Set background image using HTML and CSS
|
94 |
st.markdown(
|
95 |
f"""
|
|
|
105 |
)
|
106 |
|
107 |
# Set background image from URL
|
108 |
+
set_bg_from_url("https://www.1access.com/wp-content/uploads/2019/10/GettyImages-1180389186.jpg", opacity=0.875)
|