Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,47 +4,44 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
4 |
from peft import PeftModel
|
5 |
|
6 |
# Загружаем модель и токенизатор
|
7 |
-
base_model_name = "t-tech/T-lite-it-1.0"
|
8 |
-
lora_repo = "shao3d/my-t-lite-qlora"
|
9 |
|
10 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
11 |
base_model = AutoModelForCausalLM.from_pretrained(
|
12 |
base_model_name,
|
13 |
-
device_map="cpu",
|
14 |
-
torch_dtype=torch.float16
|
15 |
)
|
16 |
model = PeftModel.from_pretrained(base_model, lora_repo)
|
17 |
-
model.eval()
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
if not
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
inputs = tokenizer(message, return_tensors="pt").to("cpu")
|
26 |
outputs = model.generate(
|
27 |
**inputs,
|
28 |
-
max_new_tokens=50, #
|
29 |
-
temperature=0.7, #
|
30 |
-
|
|
|
31 |
)
|
32 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
return history + [[message, response]]
|
38 |
|
39 |
-
#
|
40 |
with gr.Blocks() as demo:
|
41 |
gr.Markdown("# Тест дообученной T-Lite")
|
42 |
chatbot = gr.Chatbot()
|
43 |
msg = gr.Textbox(placeholder="Напиши сообщение для модели...")
|
44 |
clear = gr.Button("Очистить чат")
|
45 |
-
|
46 |
-
# Связываем ввод с функцией
|
47 |
-
msg.submit(generate_response, inputs=[chatbot, msg], outputs=chatbot)
|
48 |
clear.click(lambda: [], None, chatbot)
|
49 |
|
50 |
demo.launch()
|
|
|
4 |
from peft import PeftModel
|
5 |
|
6 |
# Загружаем модель и токенизатор
|
7 |
+
base_model_name = "t-tech/T-lite-it-1.0"
|
8 |
+
lora_repo = "shao3d/my-t-lite-qlora"
|
9 |
|
10 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
11 |
base_model = AutoModelForCausalLM.from_pretrained(
|
12 |
base_model_name,
|
13 |
+
device_map="cpu",
|
14 |
+
torch_dtype=torch.float16
|
15 |
)
|
16 |
model = PeftModel.from_pretrained(base_model, lora_repo)
|
17 |
+
model.eval()
|
18 |
|
19 |
+
# Функция генерации ответа
|
20 |
+
def generate_response(history):
|
21 |
+
if not history:
|
22 |
+
return []
|
23 |
+
user_message = history[-1][0] # Последний вопрос пользователя
|
24 |
+
inputs = tokenizer(user_message, return_tensors="pt").to("cpu")
|
|
|
25 |
outputs = model.generate(
|
26 |
**inputs,
|
27 |
+
max_new_tokens=50, # Ограничение длины
|
28 |
+
temperature=0.7, # Креативность
|
29 |
+
top_p=0.9, # Разнообразие
|
30 |
+
do_sample=True
|
31 |
)
|
32 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
33 |
+
# Убираем повторение вопроса
|
34 |
+
if response.startswith(user_message):
|
35 |
+
response = response[len(user_message):].strip()
|
36 |
+
return history + [[user_message, response]]
|
|
|
37 |
|
38 |
+
# Интерфейс Gradio
|
39 |
with gr.Blocks() as demo:
|
40 |
gr.Markdown("# Тест дообученной T-Lite")
|
41 |
chatbot = gr.Chatbot()
|
42 |
msg = gr.Textbox(placeholder="Напиши сообщение для модели...")
|
43 |
clear = gr.Button("Очистить чат")
|
44 |
+
msg.submit(generate_response, inputs=chatbot, outputs=chatbot)
|
|
|
|
|
45 |
clear.click(lambda: [], None, chatbot)
|
46 |
|
47 |
demo.launch()
|