Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,38 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
from peft import PeftModel
|
5 |
+
|
6 |
+
base_model_name = "t-tech/T-lite-it-1.0"
|
7 |
+
lora_repo = "shao3d/my-t-lite-qlora"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
9 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
base_model_name,
|
11 |
+
device_map="auto",
|
12 |
+
load_in_8bit=True,
|
13 |
+
torch_dtype=torch.float16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
)
|
15 |
+
model = PeftModel.from_pretrained(base_model, lora_repo)
|
16 |
+
model.eval()
|
17 |
+
|
18 |
+
def generate_response(prompt):
|
19 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
outputs = model.generate(
|
21 |
+
**inputs,
|
22 |
+
max_new_tokens=200,
|
23 |
+
temperature=0.7,
|
24 |
+
top_p=0.9,
|
25 |
+
do_sample=True
|
26 |
+
)
|
27 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
+
return response[len(prompt):].strip()
|
29 |
+
|
30 |
+
with gr.Blocks() as demo:
|
31 |
+
gr.Markdown("# Тест дообученной T-Lite")
|
32 |
+
chatbot = gr.Chatbot()
|
33 |
+
msg = gr.Textbox(placeholder="Напиши сообщение для модели...")
|
34 |
+
clear = gr.Button("Очистить чат")
|
35 |
+
msg.submit(generate_response, msg, chatbot)
|
36 |
+
clear.click(lambda: [], None, chatbot)
|
37 |
+
|
38 |
+
demo.launch()
|