Spaces:
Running
Running
Linoy Tsaban
commited on
Commit
·
017df60
1
Parent(s):
2004272
Update app.py
Browse files
app.py
CHANGED
|
@@ -47,7 +47,6 @@ def sample(wt, zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1):
|
|
| 47 |
|
| 48 |
# load pipelines
|
| 49 |
sd_model_id = "runwayml/stable-diffusion-v1-5"
|
| 50 |
-
# sd_model_id = "stabilityai/stable-diffusion-2-base"
|
| 51 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 52 |
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
|
| 53 |
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
|
|
@@ -112,64 +111,49 @@ def get_example():
|
|
| 112 |
|
| 113 |
|
| 114 |
def invert_and_reconstruct(
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
| 116 |
src_prompt ="",
|
| 117 |
tar_prompt="",
|
| 118 |
steps=100,
|
| 119 |
-
|
| 120 |
skip=36,
|
| 121 |
tar_cfg_scale=15,
|
| 122 |
# neg_guidance=False,
|
| 123 |
-
|
| 124 |
):
|
| 125 |
-
offsets=(0,0,0,0)
|
| 126 |
torch.manual_seed(seed)
|
| 127 |
x0 = load_512(input_image, device=device)
|
| 128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
-
|
| 131 |
-
# wt, zs, wts = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=src_cfg_scale)
|
| 132 |
-
wt, zs, wts = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps)
|
| 133 |
|
| 134 |
-
|
| 135 |
|
| 136 |
|
| 137 |
-
#pure DDPM output
|
| 138 |
-
pure_ddpm_out = sample(wt, zs, wts, prompt_tar=tar_prompt,
|
| 139 |
-
cfg_scale_tar=tar_cfg_scale, skip=skip)
|
| 140 |
-
# inversion_map['latnets'] = latnets
|
| 141 |
-
# inversion_map['zs'] = zs
|
| 142 |
-
# inversion_map['wts'] = wts
|
| 143 |
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
-
|
| 147 |
-
def edit(input_image,
|
| 148 |
-
src_prompt ="",
|
| 149 |
-
tar_prompt="",
|
| 150 |
-
steps=100,
|
| 151 |
-
# src_cfg_scale,
|
| 152 |
-
skip=36,
|
| 153 |
-
tar_cfg_scale=15,
|
| 154 |
-
edit_concept="",
|
| 155 |
-
sega_edit_guidance=10,
|
| 156 |
-
warm_up=None,
|
| 157 |
-
# neg_guidance=False,
|
| 158 |
-
seed =0,
|
| 159 |
):
|
| 160 |
-
torch.manual_seed(seed)
|
| 161 |
-
# if not bool(inversion_map):
|
| 162 |
-
# raise gr.Error("Must invert before editing")
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
x0 = load_512(input_image, device=device)
|
| 167 |
-
|
| 168 |
-
# invert
|
| 169 |
-
# wt, zs, wts = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=src_cfg_scale)
|
| 170 |
-
wt, zs, wts = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps)
|
| 171 |
-
|
| 172 |
-
latnets = wts[skip].expand(1, -1, -1, -1)
|
| 173 |
|
| 174 |
# SEGA
|
| 175 |
# parse concepts and neg guidance
|
|
@@ -205,10 +189,11 @@ def edit(input_image,
|
|
| 205 |
edit_momentum_scale=0.5,
|
| 206 |
edit_mom_beta=0.6
|
| 207 |
)
|
|
|
|
| 208 |
sega_out = sem_pipe(prompt=tar_prompt,eta=1, latents=latnets, guidance_scale = tar_cfg_scale,
|
| 209 |
num_images_per_prompt=1,
|
| 210 |
num_inference_steps=steps,
|
| 211 |
-
use_ddpm=True, wts=wts, zs=zs[skip:], **editing_args)
|
| 212 |
return sega_out.images[0]
|
| 213 |
|
| 214 |
########
|
|
@@ -230,8 +215,15 @@ For faster inference without waiting in queue, you may duplicate the space and u
|
|
| 230 |
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
| 231 |
<p/>"""
|
| 232 |
with gr.Blocks(css='style.css') as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
gr.HTML(intro)
|
| 234 |
-
|
|
|
|
|
|
|
| 235 |
|
| 236 |
with gr.Row():
|
| 237 |
input_image = gr.Image(label="Input Image", interactive=True)
|
|
@@ -243,7 +235,7 @@ with gr.Blocks(css='style.css') as demo:
|
|
| 243 |
|
| 244 |
with gr.Row():
|
| 245 |
tar_prompt = gr.Textbox(lines=1, label="Target Prompt", interactive=True, placeholder="")
|
| 246 |
-
edit_concept = gr.Textbox(lines=1, label="SEGA Edit Concepts", visible =
|
| 247 |
|
| 248 |
with gr.Row():
|
| 249 |
with gr.Column(scale=1, min_width=100):
|
|
@@ -257,13 +249,13 @@ with gr.Blocks(css='style.css') as demo:
|
|
| 257 |
#inversion
|
| 258 |
src_prompt = gr.Textbox(lines=1, label="Source Prompt", interactive=True, placeholder="")
|
| 259 |
steps = gr.Number(value=100, precision=0, label="Num Diffusion Steps", interactive=True)
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
# reconstruction
|
| 263 |
-
skip = gr.Slider(minimum=0, maximum=40, value=36, precision=0, label="Skip Steps", interactive=True)
|
| 264 |
-
tar_cfg_scale = gr.Slider(minimum=7, maximum=18,value=15, label=f"Guidance Scale", interactive=True)
|
| 265 |
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
|
|
|
|
| 266 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
| 267 |
sega_edit_guidance = gr.Slider(value=10, label=f"SEGA Edit Guidance Scale", interactive=True)
|
| 268 |
warm_up = gr.Textbox(label=f"SEGA Warm-up Steps", interactive=True, placeholder="type #warm-up steps for each concpets (e.g. 2,7,5...")
|
| 269 |
|
|
@@ -274,37 +266,49 @@ with gr.Blocks(css='style.css') as demo:
|
|
| 274 |
# gr.Markdown(help_text)
|
| 275 |
|
| 276 |
invert_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
fn=invert_and_reconstruct,
|
| 278 |
inputs=[input_image,
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
|
|
|
| 287 |
],
|
| 288 |
-
outputs=[ddpm_edited_image],
|
| 289 |
)
|
| 290 |
|
| 291 |
edit_button.click(
|
| 292 |
fn=edit,
|
| 293 |
inputs=[input_image,
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
|
|
|
| 305 |
|
| 306 |
],
|
| 307 |
outputs=[sega_edited_image],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
)
|
| 309 |
|
| 310 |
gr.Examples(
|
|
|
|
| 47 |
|
| 48 |
# load pipelines
|
| 49 |
sd_model_id = "runwayml/stable-diffusion-v1-5"
|
|
|
|
| 50 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 51 |
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
|
| 52 |
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
|
|
|
|
| 111 |
|
| 112 |
|
| 113 |
def invert_and_reconstruct(
|
| 114 |
+
input_image,
|
| 115 |
+
do_inversion,
|
| 116 |
+
wts, zs,
|
| 117 |
+
seed,
|
| 118 |
src_prompt ="",
|
| 119 |
tar_prompt="",
|
| 120 |
steps=100,
|
| 121 |
+
src_cfg_scale = 3.5,
|
| 122 |
skip=36,
|
| 123 |
tar_cfg_scale=15,
|
| 124 |
# neg_guidance=False,
|
| 125 |
+
|
| 126 |
):
|
|
|
|
| 127 |
torch.manual_seed(seed)
|
| 128 |
x0 = load_512(input_image, device=device)
|
| 129 |
|
| 130 |
+
if do_inversion:
|
| 131 |
+
# invert and retrieve noise maps and latent
|
| 132 |
+
zs_tensor, wts_tensor = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=cfg_scale_src)
|
| 133 |
+
wts = gr.State(value=wts_tensor)
|
| 134 |
+
zs = gr.State(value=zs_tensor)
|
| 135 |
+
do_inversion = False
|
| 136 |
|
| 137 |
+
output = sample(zs.value, wts.value, prompt_tar=tar_prompt, skip=skip, cfg_scale_tar=cfg_scale_tar)
|
|
|
|
|
|
|
| 138 |
|
| 139 |
+
return output, wts, zs, do_inversion
|
| 140 |
|
| 141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
+
def edit(input_image,
|
| 144 |
+
do_inversion,
|
| 145 |
+
wts, zs, seed,
|
| 146 |
+
src_prompt ="",
|
| 147 |
+
tar_prompt="",
|
| 148 |
+
steps=100,
|
| 149 |
+
skip=36,
|
| 150 |
+
tar_cfg_scale=15,
|
| 151 |
+
edit_concept="",
|
| 152 |
+
sega_edit_guidance=10,
|
| 153 |
+
warm_up=None,
|
| 154 |
+
# neg_guidance=False,
|
| 155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
# SEGA
|
| 159 |
# parse concepts and neg guidance
|
|
|
|
| 189 |
edit_momentum_scale=0.5,
|
| 190 |
edit_mom_beta=0.6
|
| 191 |
)
|
| 192 |
+
latnets = wts.value[skip].expand(1, -1, -1, -1)
|
| 193 |
sega_out = sem_pipe(prompt=tar_prompt,eta=1, latents=latnets, guidance_scale = tar_cfg_scale,
|
| 194 |
num_images_per_prompt=1,
|
| 195 |
num_inference_steps=steps,
|
| 196 |
+
use_ddpm=True, wts=wts.value, zs=zs.value[skip:], **editing_args)
|
| 197 |
return sega_out.images[0]
|
| 198 |
|
| 199 |
########
|
|
|
|
| 215 |
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
| 216 |
<p/>"""
|
| 217 |
with gr.Blocks(css='style.css') as demo:
|
| 218 |
+
|
| 219 |
+
def reset_do_inversion():
|
| 220 |
+
do_inversion = True
|
| 221 |
+
return do_inversion
|
| 222 |
+
|
| 223 |
gr.HTML(intro)
|
| 224 |
+
wts = gr.State()
|
| 225 |
+
zs = gr.State()
|
| 226 |
+
do_inversion = gr.State(value=True)
|
| 227 |
|
| 228 |
with gr.Row():
|
| 229 |
input_image = gr.Image(label="Input Image", interactive=True)
|
|
|
|
| 235 |
|
| 236 |
with gr.Row():
|
| 237 |
tar_prompt = gr.Textbox(lines=1, label="Target Prompt", interactive=True, placeholder="")
|
| 238 |
+
edit_concept = gr.Textbox(lines=1, label="SEGA Edit Concepts", visible = True, interactive=True)
|
| 239 |
|
| 240 |
with gr.Row():
|
| 241 |
with gr.Column(scale=1, min_width=100):
|
|
|
|
| 249 |
#inversion
|
| 250 |
src_prompt = gr.Textbox(lines=1, label="Source Prompt", interactive=True, placeholder="")
|
| 251 |
steps = gr.Number(value=100, precision=0, label="Num Diffusion Steps", interactive=True)
|
| 252 |
+
src_cfg_scale = gr.Number(value=3.5, label=f"Source Guidance Scale", interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
|
| 254 |
+
randomize_seed = gr.Checkbox(label='Randomize seed', value=True)
|
| 255 |
with gr.Column():
|
| 256 |
+
# reconstruction
|
| 257 |
+
skip = gr.Slider(minimum=0, maximum=40, value=36, precision=0, label="Skip Steps", interactive=True)
|
| 258 |
+
tar_cfg_scale = gr.Slider(minimum=7, maximum=18,value=15, label=f"Guidance Scale", interactive=True)
|
| 259 |
sega_edit_guidance = gr.Slider(value=10, label=f"SEGA Edit Guidance Scale", interactive=True)
|
| 260 |
warm_up = gr.Textbox(label=f"SEGA Warm-up Steps", interactive=True, placeholder="type #warm-up steps for each concpets (e.g. 2,7,5...")
|
| 261 |
|
|
|
|
| 266 |
# gr.Markdown(help_text)
|
| 267 |
|
| 268 |
invert_button.click(
|
| 269 |
+
fn = randomize_seed_fn,
|
| 270 |
+
inputs = [seed, randomize_seed],
|
| 271 |
+
outputs = [seed]
|
| 272 |
+
).then(
|
| 273 |
fn=invert_and_reconstruct,
|
| 274 |
inputs=[input_image,
|
| 275 |
+
do_inversion,
|
| 276 |
+
wts, zs,
|
| 277 |
+
seed,
|
| 278 |
+
src_prompt,
|
| 279 |
+
tar_prompt,
|
| 280 |
+
steps,
|
| 281 |
+
src_cfg_scale,
|
| 282 |
+
skip,
|
| 283 |
+
tar_cfg_scale,
|
| 284 |
],
|
| 285 |
+
outputs=[ddpm_edited_image, wts, zs, do_inversion],
|
| 286 |
)
|
| 287 |
|
| 288 |
edit_button.click(
|
| 289 |
fn=edit,
|
| 290 |
inputs=[input_image,
|
| 291 |
+
do_inversion,
|
| 292 |
+
wts, zs,
|
| 293 |
+
seed,
|
| 294 |
+
src_prompt,
|
| 295 |
+
tar_prompt,
|
| 296 |
+
steps,
|
| 297 |
+
skip,
|
| 298 |
+
tar_cfg_scale,
|
| 299 |
+
edit_concept,
|
| 300 |
+
sega_edit_guidance,
|
| 301 |
+
warm_up,
|
| 302 |
+
# neg_guidance,
|
| 303 |
|
| 304 |
],
|
| 305 |
outputs=[sega_edited_image],
|
| 306 |
+
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
input_image.change(
|
| 310 |
+
fn = reset_do_inversion,
|
| 311 |
+
outputs = [do_inversion]
|
| 312 |
)
|
| 313 |
|
| 314 |
gr.Examples(
|