Spaces:
Sleeping
Sleeping
File size: 2,046 Bytes
496c8b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import streamlit as st
from utils import (
render_intro_section,
render_objective_section,
render_architecture_section,
render_process_section,
render_technology_section,
render_applications_section,
render_live_demo_section
)
# Page configuration
st.set_page_config(
page_title="Facial Gesture Recognition AI",
page_icon="🧠",
layout="wide"
)
# Custom styles for the presentation
st.markdown("""
<style>
.main-header {
font-size: 42px;
font-weight: bold;
margin-bottom: 0;
}
.sub-header {
font-size: 24px;
color: #1E88E5;
margin-top: 0;
}
.section-header {
font-size: 32px;
font-weight: bold;
border-bottom: 2px solid #1E88E5;
padding-bottom: 10px;
margin-top: 30px;
}
</style>
""", unsafe_allow_html=True)
# Title and introduction
st.markdown('<p class="main-header">Facial Gesture Recognition Using AI</p>', unsafe_allow_html=True)
st.markdown('<p class="sub-header">Real-time video processing with CNN-LSTM architecture</p>', unsafe_allow_html=True)
# Navigation sidebar
st.sidebar.title("Navigation")
section = st.sidebar.radio(
"Go to",
["Introduction", "Project Objective", "Architecture & Methodology",
"Process Flow", "Technologies", "Applications", "Live Demo"]
)
# Render the selected section
if section == "Introduction":
render_intro_section()
elif section == "Project Objective":
render_objective_section()
elif section == "Architecture & Methodology":
render_architecture_section()
elif section == "Process Flow":
render_process_section()
elif section == "Technologies":
render_technology_section()
elif section == "Applications":
render_applications_section()
elif section == "Live Demo":
render_live_demo_section()
# Footer
st.sidebar.markdown("---")
st.sidebar.info(
"This interactive presentation showcases a facial gesture recognition system "
"using CNN-LSTM architecture for real-time video processing."
)
|