Spaces:
Runtime error
Runtime error
File size: 1,386 Bytes
15e1bbc 58a182b da1b0ae 58a182b 15e1bbc 58a182b da1b0ae 58a182b da1b0ae 15e1bbc 6b10413 da1b0ae 58a182b da1b0ae 58a182b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import gradio as gr
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
from datasets import load_dataset
dataset = load_dataset(
"sheacon/song_lyrics",
revision="main" # tag name, or branch name, or commit hash
)
df = dataset.to_pandas()
minilm = SentenceTransformer('all-MiniLM-L12-v2')
#roberta = SentenceTransformer('all-distilroberta-v1')
#glove = SentenceTransformer('average_word_embeddings_glove.840B.300d')
# Tokenize and encode the song lyrics using the embedding model
song_embeddings = df["embedding"].tolist()
def search_songs(text, top_n=5):
# Tokenize and encode the text entry using the same embedding model
text_embedding = minilm([text])[0]
# Calculate the cosine similarity between the text entry embedding and each song embedding
similarities = cosine_similarity([text_embedding], song_embeddings)[0]
# Sort the songs by similarity score and return the top N songs with their titles and lyrics
top_indices = similarities.argsort()[::-1][:top_n]
results = [{"title": df.iloc[i]["title"], "lyrics": df.iloc[i]["lyrics"]} for i in top_indices]
return results
# Define the Gradio interface
iface = gr.Interface(search_songs, "textbox", "text", examples=[["I'm feeling lonely tonight"]])
# Launch the interface
iface.launch()
|