File size: 7,188 Bytes
d031ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb9a6d7
95a831b
d031ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4b564e
d031ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# app.py

import gradio as gr
import torch
from PIL import Image
import numpy as np
import json
from huggingface_hub import hf_hub_download

# Import necessary model libraries
import segmentation_models_pytorch as smp
import timm
import albumentations as A
from albumentations.pytorch import ToTensorV2
from torchvision import transforms

# --- 1. SETUP: Download and Load all models and data ---

print("--> Initializing application and downloading models...")
DEVICE = "cpu"

# --- Download and Load Segmentation Model (UNet) ---
try:
    SEG_REPO_ID = "sheikh987/unet-isic2018"
    SEG_MODEL_FILENAME = "unet_full_data_best_model.pth"
    print(f"--> Downloading segmentation model from: {SEG_REPO_ID}")
    seg_model_path = hf_hub_download(repo_id=SEG_REPO_ID, filename=SEG_MODEL_FILENAME)
    
    segmentation_model = smp.Unet(encoder_name="resnet34", encoder_weights=None, in_channels=3, classes=1).to(DEVICE)
    segmentation_model.load_state_dict(torch.load(seg_model_path, map_location=DEVICE))
    segmentation_model.eval()
    print("    Segmentation model loaded successfully.")

except Exception as e:
    print(f"!!! ERROR loading segmentation model: {e}")
    raise gr.Error("Failed to load the segmentation model. Check repository name and file paths.")


# --- Download and Load Classification Model (EfficientNet) ---
try:
    CLASS_REPO_ID = "sheikh987/efficientnet-isic"
    CLASS_MODEL_FILENAME = "efficientnet_augmented_best.pth"
    print(f"--> Downloading classification model from: {CLASS_REPO_ID}")
    class_model_path = hf_hub_download(repo_id=CLASS_REPO_ID, filename=CLASS_MODEL_FILENAME)

    NUM_CLASSES = 7
    classification_model = timm.create_model('efficientnet_b3', pretrained=False, num_classes=NUM_CLASSES).to(DEVICE)
    classification_model.load_state_dict(torch.load(class_model_path, map_location=DEVICE))
    classification_model.eval()
    print("    Classification model loaded successfully.")

except Exception as e:
    print(f"!!! ERROR loading classification model: {e}")
    raise gr.Error("Failed to load the classification model. Check repository name and file paths.")


# --- Load Knowledge Base and Labels ---
try:
    with open('knowledge_base.json', 'r') as f:
        knowledge_base = json.load(f)
    print("--> Knowledge base loaded.")
except FileNotFoundError:
    raise gr.Error("knowledge_base.json not found. Make sure it has been uploaded to the Space.")

idx_to_class_abbr = {0: 'MEL', 1: 'NV', 2: 'BCC', 3: 'AKIEC', 4: 'BKL', 5: 'DF', 6: 'VASC'}

# --- Define Image Transforms ---
transform_segment = A.Compose([
    A.Resize(height=256, width=256),
    A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0),
    ToTensorV2(),
])
transform_classify = transforms.Compose([
    transforms.Resize((300, 300)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

print("\n--> Application ready to accept requests.")


# --- 2. DEFINE THE FULL PIPELINE FUNCTION (UPDATED) ---

def full_pipeline(input_image):
    if input_image is None:
        return None, None, "Please upload an image."

    image_np = np.array(input_image.convert("RGB"))

    # STAGE 1: SEGMENTATION
    augmented_seg = transform_segment(image=image_np)
    seg_input_tensor = augmented_seg['image'].unsqueeze(0).to(DEVICE)
    with torch.no_grad():
        seg_logits = segmentation_model(seg_input_tensor)
    seg_mask = (torch.sigmoid(seg_logits) > 0.5).float().squeeze().cpu().numpy()
    
    if seg_mask.sum() < 200:
        return None, None, "Analysis Failed: No lesion could be clearly identified."

    # STAGE 2: CROP and CLASSIFY
    rows = np.any(seg_mask, axis=1)
    cols = np.any(seg_mask, axis=0)
    rmin, rmax = np.where(rows)[0][[0, -1]]
    cmin, cmax = np.where(cols)[0][[0, -1]]
    
    padding = 15
    rmin, rmax = max(0, rmin - padding), min(image_np.shape[0], rmax + padding)
    cmin, cmax = max(0, cmin - padding), min(image_np.shape[1], cmax + padding)

    cropped_image_pil = Image.fromarray(image_np[rmin:rmax, cmin:cmax])

    class_input_tensor = transform_classify(cropped_image_pil).unsqueeze(0).to(DEVICE)
    with torch.no_grad():
        class_logits = classification_model(class_input_tensor)
        probabilities = torch.nn.functional.softmax(class_logits, dim=1)
    
    confidence, predicted_idx = torch.max(probabilities, 1)
    confidence_percent = confidence.item() * 100
    
    # SAFETY NET
    CONFIDENCE_THRESHOLD = 50.0
    if confidence_percent < CONFIDENCE_THRESHOLD:
        inconclusive_text = (
            f"**Analysis Inconclusive**\n\n"
            f"The AI model's confidence ({confidence_percent:.2f}%) is below the required threshold of {CONFIDENCE_THRESHOLD}%.\n\n"
            "This can happen if the image is blurry, has poor lighting, or shows a condition the model was not trained on.\n\n"
            "**--- IMPORTANT DISCLAIMER ---**\n"
            "This is NOT a diagnosis. Please consult a qualified dermatologist for an accurate assessment."
        )
        mask_display = Image.fromarray((seg_mask * 255).astype(np.uint8))
        return mask_display, cropped_image_pil, inconclusive_text

    # --- STAGE 3: LOOKUP and FORMAT (UPDATED) ---
    predicted_abbr = idx_to_class_abbr[predicted_idx.item()]
    info = knowledge_base.get(predicted_abbr, {})
    
    # Format the 'causes' and 'treatments' lists into clean, bulleted strings
    causes_list = info.get('causes', ['Specific causes not listed.'])
    causes_text = "\n".join([f"• {c}" for c in causes_list])

    treatments_list = info.get('common_treatments', ['No specific treatments listed.'])
    treatments_text = "\n".join([f"• {t}" for t in treatments_list])

    # Build the final output text using all the information
    info_text = (
        f"**Predicted Condition:** {info.get('full_name', 'N/A')} ({predicted_abbr})\n"
        f"**Confidence:** {confidence_percent:.2f}%\n\n"
        f"**Description:**\n{info.get('description', 'No description available.')}\n\n"
        f"**Common Causes:**\n{causes_text}\n\n"
        f"**Common Treatments:**\n{treatments_text}\n\n"
        f"**--- IMPORTANT DISCLAIMER ---**\n{info.get('disclaimer', '')}"
    )
    
    mask_display = Image.fromarray((seg_mask * 255).astype(np.uint8))
    
    return mask_display, cropped_image_pil, info_text


# --- 3. CREATE AND LAUNCH THE GRADIO INTERFACE ---
iface = gr.Interface(
    fn=full_pipeline,
    inputs=gr.Image(type="pil", label="Upload Skin Image"),
    outputs=[
        gr.Image(type="pil", label="Segmentation Mask"),
        gr.Image(type="pil", label="Cropped Lesion"),
        gr.Markdown(label="Analysis Result")
    ],
    title="AI Skin Lesion Analyzer",
    description="This tool performs a two-stage analysis on a skin lesion image. **Stage 1:** A UNet model segments the lesion. **Stage 2:** An EfficientNet model classifies the segmented lesion. \n\n**DISCLAIMER:** This is an educational tool and is NOT a substitute for professional medical advice. Always consult a qualified dermatologist for any health concerns.",
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch()