Spaces:
Sleeping
Sleeping
File size: 7,188 Bytes
d031ec3 fb9a6d7 95a831b d031ec3 f4b564e d031ec3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# app.py
import gradio as gr
import torch
from PIL import Image
import numpy as np
import json
from huggingface_hub import hf_hub_download
# Import necessary model libraries
import segmentation_models_pytorch as smp
import timm
import albumentations as A
from albumentations.pytorch import ToTensorV2
from torchvision import transforms
# --- 1. SETUP: Download and Load all models and data ---
print("--> Initializing application and downloading models...")
DEVICE = "cpu"
# --- Download and Load Segmentation Model (UNet) ---
try:
SEG_REPO_ID = "sheikh987/unet-isic2018"
SEG_MODEL_FILENAME = "unet_full_data_best_model.pth"
print(f"--> Downloading segmentation model from: {SEG_REPO_ID}")
seg_model_path = hf_hub_download(repo_id=SEG_REPO_ID, filename=SEG_MODEL_FILENAME)
segmentation_model = smp.Unet(encoder_name="resnet34", encoder_weights=None, in_channels=3, classes=1).to(DEVICE)
segmentation_model.load_state_dict(torch.load(seg_model_path, map_location=DEVICE))
segmentation_model.eval()
print(" Segmentation model loaded successfully.")
except Exception as e:
print(f"!!! ERROR loading segmentation model: {e}")
raise gr.Error("Failed to load the segmentation model. Check repository name and file paths.")
# --- Download and Load Classification Model (EfficientNet) ---
try:
CLASS_REPO_ID = "sheikh987/efficientnet-isic"
CLASS_MODEL_FILENAME = "efficientnet_augmented_best.pth"
print(f"--> Downloading classification model from: {CLASS_REPO_ID}")
class_model_path = hf_hub_download(repo_id=CLASS_REPO_ID, filename=CLASS_MODEL_FILENAME)
NUM_CLASSES = 7
classification_model = timm.create_model('efficientnet_b3', pretrained=False, num_classes=NUM_CLASSES).to(DEVICE)
classification_model.load_state_dict(torch.load(class_model_path, map_location=DEVICE))
classification_model.eval()
print(" Classification model loaded successfully.")
except Exception as e:
print(f"!!! ERROR loading classification model: {e}")
raise gr.Error("Failed to load the classification model. Check repository name and file paths.")
# --- Load Knowledge Base and Labels ---
try:
with open('knowledge_base.json', 'r') as f:
knowledge_base = json.load(f)
print("--> Knowledge base loaded.")
except FileNotFoundError:
raise gr.Error("knowledge_base.json not found. Make sure it has been uploaded to the Space.")
idx_to_class_abbr = {0: 'MEL', 1: 'NV', 2: 'BCC', 3: 'AKIEC', 4: 'BKL', 5: 'DF', 6: 'VASC'}
# --- Define Image Transforms ---
transform_segment = A.Compose([
A.Resize(height=256, width=256),
A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0),
ToTensorV2(),
])
transform_classify = transforms.Compose([
transforms.Resize((300, 300)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
print("\n--> Application ready to accept requests.")
# --- 2. DEFINE THE FULL PIPELINE FUNCTION (UPDATED) ---
def full_pipeline(input_image):
if input_image is None:
return None, None, "Please upload an image."
image_np = np.array(input_image.convert("RGB"))
# STAGE 1: SEGMENTATION
augmented_seg = transform_segment(image=image_np)
seg_input_tensor = augmented_seg['image'].unsqueeze(0).to(DEVICE)
with torch.no_grad():
seg_logits = segmentation_model(seg_input_tensor)
seg_mask = (torch.sigmoid(seg_logits) > 0.5).float().squeeze().cpu().numpy()
if seg_mask.sum() < 200:
return None, None, "Analysis Failed: No lesion could be clearly identified."
# STAGE 2: CROP and CLASSIFY
rows = np.any(seg_mask, axis=1)
cols = np.any(seg_mask, axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
padding = 15
rmin, rmax = max(0, rmin - padding), min(image_np.shape[0], rmax + padding)
cmin, cmax = max(0, cmin - padding), min(image_np.shape[1], cmax + padding)
cropped_image_pil = Image.fromarray(image_np[rmin:rmax, cmin:cmax])
class_input_tensor = transform_classify(cropped_image_pil).unsqueeze(0).to(DEVICE)
with torch.no_grad():
class_logits = classification_model(class_input_tensor)
probabilities = torch.nn.functional.softmax(class_logits, dim=1)
confidence, predicted_idx = torch.max(probabilities, 1)
confidence_percent = confidence.item() * 100
# SAFETY NET
CONFIDENCE_THRESHOLD = 50.0
if confidence_percent < CONFIDENCE_THRESHOLD:
inconclusive_text = (
f"**Analysis Inconclusive**\n\n"
f"The AI model's confidence ({confidence_percent:.2f}%) is below the required threshold of {CONFIDENCE_THRESHOLD}%.\n\n"
"This can happen if the image is blurry, has poor lighting, or shows a condition the model was not trained on.\n\n"
"**--- IMPORTANT DISCLAIMER ---**\n"
"This is NOT a diagnosis. Please consult a qualified dermatologist for an accurate assessment."
)
mask_display = Image.fromarray((seg_mask * 255).astype(np.uint8))
return mask_display, cropped_image_pil, inconclusive_text
# --- STAGE 3: LOOKUP and FORMAT (UPDATED) ---
predicted_abbr = idx_to_class_abbr[predicted_idx.item()]
info = knowledge_base.get(predicted_abbr, {})
# Format the 'causes' and 'treatments' lists into clean, bulleted strings
causes_list = info.get('causes', ['Specific causes not listed.'])
causes_text = "\n".join([f"• {c}" for c in causes_list])
treatments_list = info.get('common_treatments', ['No specific treatments listed.'])
treatments_text = "\n".join([f"• {t}" for t in treatments_list])
# Build the final output text using all the information
info_text = (
f"**Predicted Condition:** {info.get('full_name', 'N/A')} ({predicted_abbr})\n"
f"**Confidence:** {confidence_percent:.2f}%\n\n"
f"**Description:**\n{info.get('description', 'No description available.')}\n\n"
f"**Common Causes:**\n{causes_text}\n\n"
f"**Common Treatments:**\n{treatments_text}\n\n"
f"**--- IMPORTANT DISCLAIMER ---**\n{info.get('disclaimer', '')}"
)
mask_display = Image.fromarray((seg_mask * 255).astype(np.uint8))
return mask_display, cropped_image_pil, info_text
# --- 3. CREATE AND LAUNCH THE GRADIO INTERFACE ---
iface = gr.Interface(
fn=full_pipeline,
inputs=gr.Image(type="pil", label="Upload Skin Image"),
outputs=[
gr.Image(type="pil", label="Segmentation Mask"),
gr.Image(type="pil", label="Cropped Lesion"),
gr.Markdown(label="Analysis Result")
],
title="AI Skin Lesion Analyzer",
description="This tool performs a two-stage analysis on a skin lesion image. **Stage 1:** A UNet model segments the lesion. **Stage 2:** An EfficientNet model classifies the segmented lesion. \n\n**DISCLAIMER:** This is an educational tool and is NOT a substitute for professional medical advice. Always consult a qualified dermatologist for any health concerns.",
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch() |