# app.py import gradio as gr import torch from PIL import Image import numpy as np import json from huggingface_hub import hf_hub_download # Import necessary model libraries import segmentation_models_pytorch as smp import timm import albumentations as A from albumentations.pytorch import ToTensorV2 from torchvision import transforms # --- 1. SETUP: Download and Load all models and data --- print("--> Initializing application and downloading models...") DEVICE = "cpu" # --- Download and Load Segmentation Model (UNet) --- try: SEG_REPO_ID = "sheikh987/unet-isic2018" SEG_MODEL_FILENAME = "unet_full_data_best_model.pth" print(f"--> Downloading segmentation model from: {SEG_REPO_ID}") seg_model_path = hf_hub_download(repo_id=SEG_REPO_ID, filename=SEG_MODEL_FILENAME) segmentation_model = smp.Unet(encoder_name="resnet34", encoder_weights=None, in_channels=3, classes=1).to(DEVICE) segmentation_model.load_state_dict(torch.load(seg_model_path, map_location=DEVICE)) segmentation_model.eval() print(" Segmentation model loaded successfully.") except Exception as e: print(f"!!! ERROR loading segmentation model: {e}") raise gr.Error("Failed to load the segmentation model. Check repository name and file paths.") # --- Download and Load Classification Model (EfficientNet) --- try: CLASS_REPO_ID = "sheikh987/efficientnet-isic" CLASS_MODEL_FILENAME = "efficientnet_augmented_best.pth" print(f"--> Downloading classification model from: {CLASS_REPO_ID}") class_model_path = hf_hub_download(repo_id=CLASS_REPO_ID, filename=CLASS_MODEL_FILENAME) NUM_CLASSES = 7 classification_model = timm.create_model('efficientnet_b3', pretrained=False, num_classes=NUM_CLASSES).to(DEVICE) classification_model.load_state_dict(torch.load(class_model_path, map_location=DEVICE)) classification_model.eval() print(" Classification model loaded successfully.") except Exception as e: print(f"!!! ERROR loading classification model: {e}") raise gr.Error("Failed to load the classification model. Check repository name and file paths.") # --- Load Knowledge Base and Labels --- try: with open('knowledge_base.json', 'r') as f: knowledge_base = json.load(f) print("--> Knowledge base loaded.") except FileNotFoundError: raise gr.Error("knowledge_base.json not found. Make sure it has been uploaded to the Space.") idx_to_class_abbr = {0: 'MEL', 1: 'NV', 2: 'BCC', 3: 'AKIEC', 4: 'BKL', 5: 'DF', 6: 'VASC'} # --- Define Image Transforms --- transform_segment = A.Compose([ A.Resize(height=256, width=256), A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0), ToTensorV2(), ]) transform_classify = transforms.Compose([ transforms.Resize((300, 300)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) print("\n--> Application ready to accept requests.") # --- 2. DEFINE THE FULL PIPELINE FUNCTION (UPDATED) --- def full_pipeline(input_image): if input_image is None: return None, None, "Please upload an image." image_np = np.array(input_image.convert("RGB")) # STAGE 1: SEGMENTATION augmented_seg = transform_segment(image=image_np) seg_input_tensor = augmented_seg['image'].unsqueeze(0).to(DEVICE) with torch.no_grad(): seg_logits = segmentation_model(seg_input_tensor) seg_mask = (torch.sigmoid(seg_logits) > 0.5).float().squeeze().cpu().numpy() if seg_mask.sum() < 200: return None, None, "Analysis Failed: No lesion could be clearly identified." # STAGE 2: CROP and CLASSIFY rows = np.any(seg_mask, axis=1) cols = np.any(seg_mask, axis=0) rmin, rmax = np.where(rows)[0][[0, -1]] cmin, cmax = np.where(cols)[0][[0, -1]] padding = 15 rmin, rmax = max(0, rmin - padding), min(image_np.shape[0], rmax + padding) cmin, cmax = max(0, cmin - padding), min(image_np.shape[1], cmax + padding) cropped_image_pil = Image.fromarray(image_np[rmin:rmax, cmin:cmax]) class_input_tensor = transform_classify(cropped_image_pil).unsqueeze(0).to(DEVICE) with torch.no_grad(): class_logits = classification_model(class_input_tensor) probabilities = torch.nn.functional.softmax(class_logits, dim=1) confidence, predicted_idx = torch.max(probabilities, 1) confidence_percent = confidence.item() * 100 # SAFETY NET CONFIDENCE_THRESHOLD = 60.0 if confidence_percent < CONFIDENCE_THRESHOLD: inconclusive_text = ( f"**Analysis Inconclusive**\n\n" f"The AI model's confidence ({confidence_percent:.2f}%) is below the required threshold of {CONFIDENCE_THRESHOLD}%.\n\n" "This can happen if the image is blurry, has poor lighting, or shows a condition the model was not trained on.\n\n" "**--- IMPORTANT DISCLAIMER ---**\n" "This is NOT a diagnosis. Please consult a qualified dermatologist for an accurate assessment." ) mask_display = Image.fromarray((seg_mask * 255).astype(np.uint8)) return mask_display, cropped_image_pil, inconclusive_text # --- STAGE 3: LOOKUP and FORMAT (UPDATED) --- predicted_abbr = idx_to_class_abbr[predicted_idx.item()] info = knowledge_base.get(predicted_abbr, {}) # Format the 'causes' and 'treatments' lists into clean, bulleted strings causes_list = info.get('causes', ['Specific causes not listed.']) causes_text = "\n".join([f"• {c}" for c in causes_list]) treatments_list = info.get('common_treatments', ['No specific treatments listed.']) treatments_text = "\n".join([f"• {t}" for t in treatments_list]) # Build the final output text using all the information info_text = ( f"**Predicted Condition:** {info.get('full_name', 'N/A')} ({predicted_abbr})\n" f"**Confidence:** {confidence_percent:.2f}%\n\n" f"**Description:**\n{info.get('description', 'No description available.')}\n\n" f"**Common Causes:**\n{causes_text}\n\n" f"**Common Treatments:**\n{treatments_text}\n\n" f"**--- IMPORTANT DISCLAIMER ---**\n{info.get('disclaimer', '')}" ) mask_display = Image.fromarray((seg_mask * 255).astype(np.uint8)) return mask_display, cropped_image_pil, info_text # --- 3. CREATE AND LAUNCH THE GRADIO INTERFACE --- iface = gr.Interface( fn=full_pipeline, inputs=gr.Image(type="pil", label="Upload Skin Image"), outputs=[ gr.Image(type="pil", label="Segmentation Mask"), gr.Image(type="pil", label="Cropped Lesion"), gr.Markdown(label="Analysis Result") ], title="AI Skin Lesion Analyzer", description="This tool performs a two-stage analysis on a skin lesion image. **Stage 1:** A UNet model segments the lesion. **Stage 2:** An EfficientNet model classifies the segmented lesion. \n\n**DISCLAIMER:** This is an educational tool and is NOT a substitute for professional medical advice. Always consult a qualified dermatologist for any health concerns.", allow_flagging="never" ) if __name__ == "__main__": iface.launch()