skintest / main.py
sheikh987's picture
Update main.py
ba3cd47 verified
import base64
import io
import json
import numpy as np
import torch
from fastapi import FastAPI, HTTPException
from huggingface_hub import hf_hub_download
from PIL import Image
from pydantic import BaseModel
from torchvision import transforms
import timm
import segmentation_models_pytorch as smp
import albumentations as A
from albumentations.pytorch import ToTensorV2
import os
# --- 1. SETUP: Create the FastAPI app ---
app = FastAPI(title="AI Skin Lesion Analyzer API")
# --- Global variables ---
DEVICE = "cpu"
segmentation_model = None
classification_model = None
knowledge_base = None
idx_to_class_abbr = {0: 'MEL', 1: 'NV', 2: 'BCC', 3: 'AKIEC', 4: 'BKL', 5: 'DF', 6: 'VASC'}
transform_segment = None
transform_classify = None
class ImageRequest(BaseModel):
image_base64: str
@app.on_event("startup")
def load_assets():
global segmentation_model, classification_model, knowledge_base, transform_segment, transform_classify
# Haddii hore loo load gareeyay, iska dhaaf
if segmentation_model is not None and classification_model is not None and knowledge_base is not None:
print("🔁 Models and knowledge base already loaded. Skipping reloading.")
return
print("--> API starting up: This may take a few minutes...")
# Use /tmp for writable cache directory
cache_dir = "/tmp/models_cache"
os.makedirs(cache_dir, exist_ok=True)
# Load Segmentation Model
try:
print(" Downloading UNet segmentation model...")
seg_model_path = hf_hub_download(
repo_id="sheikh987/unet-isic2018",
filename="unet_full_data_best_model.pth",
cache_dir=cache_dir
)
segmentation_model = smp.Unet("resnet34", encoder_weights=None, in_channels=3, classes=1).to(DEVICE)
segmentation_model.load_state_dict(torch.load(seg_model_path, map_location=DEVICE))
segmentation_model.eval()
print(" ✅ Segmentation model loaded.")
except Exception as e:
print(f"!!! FATAL: Could not load segmentation model: {e}")
# Load Classification Model
try:
print(" Downloading EfficientNet classification model...")
class_model_path = hf_hub_download(
repo_id="sheikh987/efficientnet-isic",
filename="efficientnet_augmented_best.pth",
cache_dir=cache_dir
)
classification_model = timm.create_model('efficientnet_b3', pretrained=False, num_classes=7).to(DEVICE)
classification_model.load_state_dict(torch.load(class_model_path, map_location=DEVICE))
classification_model.eval()
print(" ✅ Classification model loaded.")
except Exception as e:
print(f"!!! FATAL: Could not load classification model: {e}")
# Load Knowledge Base
try:
with open('knowledge_base.json', 'r') as f:
knowledge_base = json.load(f)
print(" ✅ Knowledge base loaded.")
except Exception as e:
print(f"!!! FATAL: Could not load knowledge_base.json: {e}")
# Define Image Transforms
transform_segment = A.Compose([
A.Resize(256, 256),
A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0),
ToTensorV2()
])
transform_classify = transforms.Compose([
transforms.Resize((300, 300)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
print("\n--> API is ready to accept requests.")
@app.post("/analyze/")
async def analyze_image(request: ImageRequest):
if not all([segmentation_model, classification_model, knowledge_base]):
raise HTTPException(status_code=503, detail="Models not loaded yet. Please retry shortly.")
try:
image_data = base64.b64decode(request.image_base64)
image = Image.open(io.BytesIO(image_data)).convert("RGB")
image_np = np.array(image)
except Exception:
raise HTTPException(status_code=400, detail="Invalid base64 image data provided.")
# Stage 1: Segmentation
augmented_seg = transform_segment(image=image_np)
seg_input_tensor = augmented_seg['image'].unsqueeze(0).to(DEVICE)
with torch.no_grad():
seg_logits = segmentation_model(seg_input_tensor)
seg_mask = (torch.sigmoid(seg_logits) > 0.5).float().squeeze().cpu().numpy()
if seg_mask.sum() < 200:
return {"status": "Failed", "message": "No lesion could be clearly identified in the image."}
# Stage 2: Crop and classify
rows, cols = np.any(seg_mask, axis=1), np.any(seg_mask, axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
padding = 15
rmin, rmax = max(0, rmin - padding), min(image_np.shape[0], rmax + padding)
cmin, cmax = max(0, cmin - padding), min(image_np.shape[1], cmax + padding)
cropped_image_pil = Image.fromarray(image_np[rmin:rmax, cmin:cmax])
class_input_tensor = transform_classify(cropped_image_pil).unsqueeze(0).to(DEVICE)
with torch.no_grad():
class_logits = classification_model(class_input_tensor)
probabilities = torch.nn.functional.softmax(class_logits, dim=1)
confidence, predicted_idx = torch.max(probabilities, 1)
confidence_percent = confidence.item() * 100
if confidence_percent < 50.0:
return {"status": "Inconclusive", "message": f"Model confidence ({confidence_percent:.2f}%) is below the 75% threshold."}
# Stage 3: Return result
predicted_abbr = idx_to_class_abbr[predicted_idx.item()]
info = knowledge_base.get(predicted_abbr, {})
return {
"status": "Success",
"prediction": info,
"abbreviation": predicted_abbr,
"confidence": f"{confidence_percent:.2f}%"
}
@app.get("/")
def root():
return {"message": "AI Skin Lesion Analyzer API is running."}