File size: 11,709 Bytes
da25681 a3e352f f69554c da25681 f69554c da25681 2bce8ff cbce214 da25681 cbce214 c9696b8 da25681 a23ccb7 2bce8ff da25681 8882e69 f69554c 2bce8ff a3e352f da25681 2bce8ff da25681 a3e352f da25681 2bce8ff da25681 a3e352f f69554c da25681 f69554c da25681 a3e352f 8882e69 a3e352f 8882e69 f69554c 8882e69 f69554c 8882e69 a3e352f c9696b8 f69554c c9696b8 f69554c c9696b8 f69554c da25681 cbce214 da25681 cbce214 da25681 a3e352f da25681 cbce214 da25681 a3e352f f69554c cbce214 f69554c da25681 cbce214 f69554c cbce214 a23ccb7 a3e352f f69554c cbce214 da25681 f69554c a3e352f cbce214 f69554c cbce214 f69554c da25681 a3e352f f69554c da25681 f69554c da25681 a7c9b9d f69554c a7c9b9d f69554c a7c9b9d 8882e69 f69554c a7c9b9d 8882e69 a7c9b9d f69554c a7c9b9d 8882e69 a23ccb7 a7c9b9d f69554c a7c9b9d 8882e69 f69554c a7c9b9d f69554c da25681 f69554c da25681 a3e352f f69554c b2b31f2 a3e352f b2b31f2 f69554c b2b31f2 a3e352f b2b31f2 a3e352f f69554c a3e352f b2b31f2 f69554c b2b31f2 f69554c b2b31f2 a3e352f f69554c b2b31f2 a3e352f b2b31f2 a3e352f f69554c f959be9 8882e69 f69554c f959be9 a3e352f b2b31f2 a3e352f da25681 f69554c a3e352f f69554c a3e352f b2b31f2 a3e352f b2b31f2 a3e352f f69554c a3e352f 8882e69 f69554c a3e352f c9696b8 f69554c a3e352f cbce214 a3e352f cbce214 f69554c a3e352f cbce214 a3e352f d52bea3 f69554c d52bea3 a3e352f f69554c d52bea3 f69554c d52bea3 a3e352f d52bea3 f69554c d52bea3 b2b31f2 f69554c b2b31f2 a3e352f f69554c b2b31f2 a3e352f 8882e69 d52bea3 f69554c d52bea3 da25681 a23ccb7 8882e69 f69554c a3e352f f69554c da25681 a23ccb7 cbce214 49e56cb 7eea0f7 a23ccb7 a3e352f f959be9 7eea0f7 a3e352f f69554c a23ccb7 f69554c a23ccb7 a3e352f da25681 a3e352f da25681 f69554c da25681 d7e99cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import requests
import json
import time
import subprocess
import gradio as gr
import uuid
import os
import logging
from dotenv import load_dotenv
# Set up logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# API Keys
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
REPLICATE_API_TOKEN = os.getenv("REPLICATE_API_TOKEN")
# URLs
REPLICATE_API_URL = "https://api.replicate.com/v1/predictions"
UPLOAD_URL = os.getenv("UPLOAD_URL")
def get_voices():
# OpenAI TTS voices
return [
("alloy", "alloy"),
("echo", "echo"),
("fable", "fable"),
("onyx", "onyx"),
("nova", "nova"),
("shimmer", "shimmer")
]
def text_to_speech(voice, text, session_id):
logger.info(f"Starting text-to-speech conversion for session {session_id}")
url = "https://api.openai.com/v1/audio/speech"
headers = {
"Authorization": f"Bearer {OPENAI_API_KEY}",
"Content-Type": "application/json"
}
data = {
"model": "tts-1",
"input": text,
"voice": voice
}
logger.debug(f"Sending request to OpenAI TTS API for session {session_id}")
response = requests.post(url, json=data, headers=headers)
if response.status_code != 200:
logger.error(f"Failed to generate speech audio for session {session_id}. Status code: {response.status_code}")
return None
# Save temporary audio file with session ID
audio_file_path = f'tempvoice{session_id}.mp3'
with open(audio_file_path, 'wb') as audio_file:
audio_file.write(response.content)
logger.info(f"Audio file saved: {audio_file_path}")
return audio_file_path
def upload_file(file_path):
logger.info(f"Uploading file: {file_path}")
with open(file_path, 'rb') as file:
files = {'fileToUpload': (os.path.basename(file_path), file)}
data = {'reqtype': 'fileupload'}
response = requests.post(UPLOAD_URL, files=files, data=data)
if response.status_code == 200:
logger.info(f"File uploaded successfully: {file_path}")
return response.text.strip()
logger.error(f"Failed to upload file: {file_path}. Status code: {response.status_code}")
return None
def lipsync_api_call(video_url, audio_url):
logger.info(f"Initiating lip-sync API call with video: {video_url} and audio: {audio_url}")
headers = {
"Authorization": f"Bearer {REPLICATE_API_TOKEN}",
"Content-Type": "application/json",
"Prefer": "wait"
}
data = {
"version": "db5a650c807b007dc5f9e5abe27c53e1b62880d1f94d218d27ce7fa802711d67",
"input": {
"face": video_url,
"input_audio": audio_url
}
}
logger.debug(f"Sending request to Replicate API with data: {json.dumps(data)}")
response = requests.post(REPLICATE_API_URL, headers=headers, json=data)
logger.debug(f"Received response from Replicate API: {response.text}")
return response.json()
def check_job_status(prediction_id):
logger.info(f"Checking job status for prediction ID: {prediction_id}")
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}"}
max_attempts = 30 # Limit the number of attempts
for attempt in range(max_attempts):
logger.debug(f"Attempt {attempt + 1} to check job status")
response = requests.get(f"{REPLICATE_API_URL}/{prediction_id}", headers=headers)
data = response.json()
logger.debug(f"Job status response: {json.dumps(data)}")
if data["status"] == "succeeded":
logger.info(f"Job completed successfully for prediction ID: {prediction_id}")
return data["output"]
elif data["status"] == "failed":
logger.error(f"Job failed for prediction ID: {prediction_id}")
return None
logger.info(f"Job still in progress. Waiting for 10 seconds before next check.")
time.sleep(10)
logger.warning(f"Max attempts reached for prediction ID: {prediction_id}")
return None
def get_media_duration(file_path):
logger.info(f"Getting media duration for: {file_path}")
cmd = ['ffprobe', '-v', 'error', '-show_entries', 'format=duration', '-of', 'default=noprint_wrappers=1:nokey=1', file_path]
result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
duration = float(result.stdout.strip())
logger.info(f"Media duration: {duration} seconds")
return duration
def combine_audio_video(video_path, audio_path, output_path):
logger.info(f"Combining audio and video: video={video_path}, audio={audio_path}, output={output_path}")
video_duration = get_media_duration(video_path)
audio_duration = get_media_duration(audio_path)
if video_duration > audio_duration:
logger.info("Video longer than audio. Trimming video.")
cmd = [
'ffmpeg', '-i', video_path, '-i', audio_path,
'-t', str(audio_duration), # Trim video to audio duration
'-map', '0:v', '-map', '1:a',
'-c:v', 'copy', '-c:a', 'aac',
'-y', output_path
]
else:
logger.info("Audio longer than video. Looping video.")
loop_count = int(audio_duration // video_duration) + 1
cmd = [
'ffmpeg', '-stream_loop', str(loop_count), '-i', video_path, '-i', audio_path,
'-t', str(audio_duration),
'-map', '0:v', '-map', '1:a',
'-c:v', 'copy', '-c:a', 'aac',
'-shortest', '-y', output_path
]
logger.debug(f"Running ffmpeg command: {' '.join(cmd)}")
subprocess.run(cmd, check=True)
logger.info(f"Audio and video combined successfully: {output_path}")
def create_video_from_image(image_url, session_id):
logger.info(f"Creating video from image: {image_url}")
response = requests.get(image_url)
image_path = f"tempimage{session_id}.jpg"
with open(image_path, "wb") as f:
f.write(response.content)
logger.info(f"Image downloaded: {image_path}")
video_path = f"tempvideo{session_id}.mp4"
cmd = [
'ffmpeg', '-loop', '1', '-i', image_path,
'-vf', 'scale=trunc(iw/2)*2:trunc(ih/2)*2',
'-c:v', 'libx264', '-t', '10', '-pix_fmt', 'yuv420p',
video_path
]
logger.debug(f"Running ffmpeg command: {' '.join(cmd)}")
subprocess.run(cmd, check=True)
logger.info(f"Video created from image: {video_path}")
os.remove(image_path)
logger.info(f"Temporary image file removed: {image_path}")
return video_path
def process_video(voice, url, text, progress=gr.Progress()):
session_id = str(uuid.uuid4())
logger.info(f"Starting video processing for session {session_id}")
progress(0, desc="Generating speech...")
audio_path = text_to_speech(voice, text, session_id)
if not audio_path:
logger.error(f"Failed to generate speech audio for session {session_id}")
return None, "Failed to generate speech audio."
progress(0.2, desc="Processing media...")
try:
logger.info(f"Checking content type of URL: {url}")
response = requests.head(url)
content_type = response.headers.get('Content-Type', '')
logger.info(f"Content type of URL: {content_type}")
if content_type.startswith('image'):
progress(0.3, desc="Converting image to video...")
video_path = create_video_from_image(url, session_id)
video_url = upload_file(video_path)
else:
video_url = url
logger.info(f"Video URL: {video_url}")
progress(0.4, desc="Uploading audio...")
audio_url = upload_file(audio_path)
logger.info(f"Audio URL: {audio_url}")
if not audio_url or not video_url:
raise Exception("Failed to upload audio or video file")
progress(0.5, desc="Initiating lipsync...")
job_data = lipsync_api_call(video_url, audio_url)
logger.info(f"Lipsync job data: {json.dumps(job_data)}")
if "error" in job_data:
raise Exception(job_data.get("error", "Unknown error"))
prediction_id = job_data["id"]
logger.info(f"Lipsync prediction ID: {prediction_id}")
progress(0.6, desc="Processing lipsync...")
result_url = check_job_status(prediction_id)
if result_url:
logger.info(f"Lipsync result URL: {result_url}")
progress(0.9, desc="Downloading result...")
response = requests.get(result_url)
output_path = f"output{session_id}.mp4"
with open(output_path, 'wb') as f:
f.write(response.content)
logger.info(f"Lipsync result saved to: {output_path}")
progress(1.0, desc="Complete!")
return output_path, "Lipsync completed successfully!"
else:
raise Exception("Lipsync processing failed or timed out")
except Exception as e:
logger.error(f"Error during lipsync process: {str(e)}")
progress(0.8, desc="Falling back to simple combination...")
try:
if 'video_path' not in locals():
logger.info("Downloading video from URL")
video_response = requests.get(video_url)
video_path = f"tempvideo{session_id}.mp4"
with open(video_path, 'wb') as f:
f.write(video_response.content)
output_path = f"output{session_id}.mp4"
combine_audio_video(video_path, audio_path, output_path)
progress(1.0, desc="Complete!")
return output_path, f"Used fallback method. Original error: {str(e)}"
except Exception as fallback_error:
logger.error(f"Fallback method failed: {str(fallback_error)}")
return None, f"All methods failed. Error: {str(fallback_error)}"
finally:
# Cleanup
if os.path.exists(audio_path):
os.remove(audio_path)
logger.info(f"Removed temporary audio file: {audio_path}")
if os.path.exists(f"tempvideo{session_id}.mp4"):
os.remove(f"tempvideo{session_id}.mp4")
logger.info(f"Removed temporary video file: tempvideo{session_id}.mp4")
def create_interface():
voices = get_voices()
with gr.Blocks() as app:
gr.Markdown("# Generator")
with gr.Row():
with gr.Column():
voice_dropdown = gr.Dropdown(choices=[v[0] for v in voices], label="Select Voice", value=voices[0][0] if voices else None)
url_input = gr.Textbox(label="Enter Video or Image URL")
text_input = gr.Textbox(label="Enter text", lines=3)
generate_btn = gr.Button("Generate Video")
with gr.Column():
video_output = gr.Video(label="Generated Video")
status_output = gr.Textbox(label="Status", interactive=False)
def on_generate(voice_name, url, text):
logger.info(f"Generation started with voice: {voice_name}, URL: {url}")
voice_id = next((v[1] for v in voices if v[0] == voice_name), None)
if not voice_id:
logger.error(f"Invalid voice selected: {voice_name}")
return None, "Invalid voice selected."
return process_video(voice_id, url, text)
generate_btn.click(
fn=on_generate,
inputs=[voice_dropdown, url_input, text_input],
outputs=[video_output, status_output]
)
return app
if __name__ == "__main__":
logger.info("Starting the application")
app = create_interface()
app.launch() |