Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, UploadFile, File | |
from fastapi.middleware.cors import CORSMiddleware | |
from PIL import Image | |
from transformers import MobileNetV2ForSemanticSegmentation, AutoImageProcessor | |
import torch | |
from io import BytesIO | |
import base64 | |
import numpy as np | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# Load processor and model | |
processor = AutoImageProcessor.from_pretrained("seg_model") | |
model = MobileNetV2ForSemanticSegmentation.from_pretrained("seg_model") | |
async def predict(file: UploadFile = File(...)): | |
contents = await file.read() | |
img = Image.open(BytesIO(contents)).convert("RGB") | |
inputs = processor(images=img, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits # (batch, num_labels, H, W) | |
mask = torch.argmax(logits, dim=1)[0].numpy().astype(np.uint8) | |
# Convert mask to grayscale PNG and return as base64 | |
mask_img = Image.fromarray(mask) | |
buf = BytesIO() | |
mask_img.save(buf, format="PNG") | |
buf.seek(0) | |
b64 = base64.b64encode(buf.read()).decode() | |
return {"success": True, "mask": "data:image/png;base64," + b64} | |