Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File
|
2 |
+
from fastapi.responses import JSONResponse
|
3 |
+
from PIL import Image
|
4 |
+
import torch, torchvision.transforms as T
|
5 |
+
from transformers import MobileNetV2ForSemanticSegmentation
|
6 |
+
import io
|
7 |
+
|
8 |
+
# Load the model
|
9 |
+
model = MobileNetV2ForSemanticSegmentation.from_pretrained("seg_model")
|
10 |
+
model.eval()
|
11 |
+
|
12 |
+
preprocess = T.Compose([
|
13 |
+
T.Resize(513),
|
14 |
+
T.ToTensor(),
|
15 |
+
T.Normalize(mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225])
|
16 |
+
])
|
17 |
+
|
18 |
+
app = FastAPI()
|
19 |
+
|
20 |
+
@app.get("/")
|
21 |
+
def root():
|
22 |
+
return {"status": "API up for segmentation"}
|
23 |
+
|
24 |
+
@app.post("/predict")
|
25 |
+
async def predict(file: UploadFile = File(...)):
|
26 |
+
img = Image.open(await file.read()).convert("RGB")
|
27 |
+
x = preprocess(img).unsqueeze(0)
|
28 |
+
with torch.no_grad():
|
29 |
+
outputs = model(x).logits
|
30 |
+
seg = outputs.argmax(1)[0].tolist()
|
31 |
+
return JSONResponse(content={"segmentation_mask": seg})
|