Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from fastapi import FastAPI, UploadFile, File
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
3 |
from PIL import Image
|
4 |
from io import BytesIO
|
5 |
import numpy as np
|
@@ -7,7 +8,6 @@ import tensorflow as tf
|
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
-
# CORS config (optional)
|
11 |
app.add_middleware(
|
12 |
CORSMiddleware,
|
13 |
allow_origins=["*"],
|
@@ -15,13 +15,26 @@ app.add_middleware(
|
|
15 |
allow_headers=["*"],
|
16 |
)
|
17 |
|
|
|
|
|
|
|
18 |
@app.post("/predict")
|
19 |
async def predict(file: UploadFile = File(...)):
|
20 |
contents = await file.read()
|
21 |
img = Image.open(BytesIO(contents)).convert("RGB")
|
22 |
-
img = img.resize((256, 256))
|
23 |
arr = np.array(img) / 255.0
|
24 |
arr = np.expand_dims(arr, 0)
|
25 |
-
|
26 |
-
#
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, UploadFile, File
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from fastapi.responses import StreamingResponse
|
4 |
from PIL import Image
|
5 |
from io import BytesIO
|
6 |
import numpy as np
|
|
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
|
|
11 |
app.add_middleware(
|
12 |
CORSMiddleware,
|
13 |
allow_origins=["*"],
|
|
|
15 |
allow_headers=["*"],
|
16 |
)
|
17 |
|
18 |
+
# Load your trained segmentation model here
|
19 |
+
# model = tf.keras.models.load_model("seg_model_path")
|
20 |
+
|
21 |
@app.post("/predict")
|
22 |
async def predict(file: UploadFile = File(...)):
|
23 |
contents = await file.read()
|
24 |
img = Image.open(BytesIO(contents)).convert("RGB")
|
25 |
+
img = img.resize((256, 256))
|
26 |
arr = np.array(img) / 255.0
|
27 |
arr = np.expand_dims(arr, 0)
|
28 |
+
|
29 |
+
# Prediction
|
30 |
+
prediction = model.predict(arr) # (1, 256, 256, num_classes)
|
31 |
+
mask = np.argmax(prediction[0], axis=-1).astype(np.uint8) # (256, 256)
|
32 |
+
|
33 |
+
# Convert to image (you can colorize or just multiply for visualization)
|
34 |
+
mask_img = Image.fromarray(mask * 50) # Optional scaling for visibility
|
35 |
+
|
36 |
+
buf = BytesIO()
|
37 |
+
mask_img.save(buf, format='PNG')
|
38 |
+
buf.seek(0)
|
39 |
+
|
40 |
+
return StreamingResponse(buf, media_type="image/png")
|