File size: 12,350 Bytes
52e4f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import argparse
import itertools
import json
import os
import random
import sys
import uuid
from datetime import timedelta
from functools import partial
from pathlib import Path

import torch
import tqdm
from datasets import load_dataset
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig

import torchaudio
from vita_audio.data.processor.audio_processor import add_audio_input_contiguous
from vita_audio.tokenizer import get_audio_tokenizer


def collate_fn(batches):
    input_ids = [sample["input_ids"] for sample in batches]
    audios = [sample["audios"] for sample in batches]
    audio_indices = [sample["audio_indices"] for sample in batches]

    refs = [sample["ref"] for sample in batches]

    return input_ids, audios, audio_indices, refs


class ASRDataset(torch.utils.data.Dataset):
    def __init__(
        self,
        json_path,
        tokenizer,
        audio_tokenizer,
        default_system_message=None,
        add_generation_prompt=True,
    ):
        data = load_dataset("json", data_files=json_path, keep_in_memory=False)
        self.data = data["train"]

        self.tokenizer = tokenizer
        self.add_generation_prompt = add_generation_prompt

        self.audio_tokenizer = audio_tokenizer
        self.default_system_message = default_system_message

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        sample = self.data[idx]
        # print(f"sample {sample}")

        audio_path = sample["audios"][0]

        if self.audio_tokenizer.apply_to_role("user", is_discrete=True):
            # discrete codec
            audio_tokens = self.audio_tokenizer.encode(audio_path)
            audio_tokens = "".join(f"<|audio_{i}|>" for i in audio_tokens)
        else:
            audio_tokens = None

        messages = []
        if len(sample["messages"]) == 2:
            assert len(sample["messages"]) == 2
            assert sample["messages"][0]["role"] == "user"
            assert sample["messages"][1]["role"] == "assistant"

            if self.default_system_message is not None:
                messages = self.default_system_message + messages

        elif len(sample["messages"]) == 3:
            assert len(sample["messages"]) == 3
            assert sample["messages"][0]["role"] == "system"
            assert sample["messages"][1]["role"] == "user"
            assert sample["messages"][2]["role"] == "assistant"

        else:
            raise NotImplementedError

        # print(sample)
        for conv in sample["messages"][:-1]:
            new_conv = {}
            new_conv["role"] = conv["role"]

            content = conv["content"]

            if audio_tokens is not None:
                content = content.replace(
                    "<|audio|>", f"<|begin_of_audio|>{audio_tokens}<|end_of_audio|>"
                )

            new_conv["content"] = content
            messages.append(new_conv)

        input_ids = self.tokenizer.apply_chat_template(
            messages,
            tokenize=True,
            add_generation_prompt=self.add_generation_prompt,
            # return_tensors="pt",
        )

        ref = sample["messages"][-1]["content"]

        if self.audio_tokenizer.apply_to_role("user", is_contiguous=True):
            # contiguous codec
            input_ids, audios, audio_indices = add_audio_input_contiguous(
                input_ids, [audio_path], self.tokenizer, self.audio_tokenizer
            )
        else:
            audios = None
            audio_indices = None

        input_ids = torch.tensor([input_ids], dtype=torch.long)
        return {
            "input_ids": input_ids,
            "audios": audios,
            "audio_indices": audio_indices,
            "ref": ref,
        }


class InferenceSampler(torch.utils.data.sampler.Sampler):
    def __init__(self, size):
        self._size = int(size)
        assert size > 0
        self._rank = torch.distributed.get_rank()
        self._world_size = torch.distributed.get_world_size()
        self._local_indices = self._get_local_indices(size, self._world_size, self._rank)

    @staticmethod
    def _get_local_indices(total_size, world_size, rank):
        shard_size = total_size // world_size
        left = total_size % world_size
        shard_sizes = [shard_size + int(r < left) for r in range(world_size)]

        begin = sum(shard_sizes[:rank])
        end = min(sum(shard_sizes[: rank + 1]), total_size)
        return range(begin, end)

    def __iter__(self):
        yield from self._local_indices

    def __len__(self):
        return len(self._local_indices)


def inference(model, tokenizer, audio_tokenizer, dataloader, output_dir):

    audio_offset = tokenizer.convert_tokens_to_ids("<|audio_0|>")

    outputs = []

    for _, (batched_input_ids, batched_audios, batched_audio_indices, batched_ref) in enumerate(
        tqdm.tqdm(dataloader)
    ):

        for input_ids, audios, audio_indices, ref in zip(
            batched_input_ids, batched_audios, batched_audio_indices, batched_ref
        ):
            kwargs = {
                # "temperature": 0.2,
                # "top_p": 0.8,
                # "do_sample": False,
                # "temperature": 1.0,
                "max_new_tokens": max([len(x) for x in batched_ref]) + 10,
                "min_new_tokens": 1,
            }
            if audios is not None:
                kwargs["audios"] = audios
                kwargs["audio_indices"] = audio_indices

            responses = model.generate(
                input_ids=input_ids.cuda(),
                **kwargs,
            )

            response = responses[0][len(input_ids[0]) :]

            text_tokens = []
            audio_tokens = []
            for token_id in response:
                if token_id >= audio_offset:
                    audio_tokens.append(token_id - audio_offset)
                else:
                    text_tokens.append(token_id)

            hyp = tokenizer.decode(text_tokens, skip_special_tokens=True)

            outputs.append((hyp, ref))

            print("")
            print("=" * 100)
            print(f"{hyp=}")
            print(f"{ref=}")

    return outputs


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="",
        formatter_class=argparse.RawDescriptionHelpFormatter,
    )

    parser.add_argument("--model_name_or_path", type=str, required=True, help="model_name_or_path")
    parser.add_argument(
        "--audio_tokenizer_path", type=str, required=True, help="audio_tokenizer_path"
    )
    parser.add_argument(
        "--audio_tokenizer_type", type=str, required=True, help="audio_tokenizer_type"
    )
    parser.add_argument("--flow_path", type=str, required=True, help="flow_path")

    parser.add_argument("--json_path", type=str, required=True, help="json_path")
    parser.add_argument("--output_dir", type=str, required=True, help="output_dir")

    parser.add_argument("--batch_size", type=int, default=1)
    parser.add_argument("--num_workers", type=int, default=0)

    args = parser.parse_args()

    print(f"{args=}")

    torch.distributed.init_process_group(
        backend="nccl",
        world_size=int(os.getenv("WORLD_SIZE", "1")),
        rank=int(os.getenv("RANK", "0")),
        timeout=timedelta(seconds=7200),
    )

    torch.cuda.set_device(int(os.getenv("LOCAL_RANK", 0)))

    random.seed(42)
    torch.manual_seed(42)

    config = AutoConfig.from_pretrained(
        args.model_name_or_path,
        trust_remote_code=True,
    )

    # ================================================================
    if "glm" in config.model_type.lower():
        from get_chat_template import glm4_chat_template as chat_template

        add_generation_prompt = True

        default_system_message = [
            {
                "role": "system",
                "content": "User will provide you with a speech instruction. Do it step by step. First, think about the instruction and respond in a interleaved manner, with 13 text token followed by 26 audio tokens.",
            }
        ]

    if "qwen2" in config.model_type.lower():
        from get_chat_template import qwen2_chat_template as chat_template

        add_generation_prompt = True

        default_system_message = []

    if "hunyuan" in config.model_type.lower():
        from get_chat_template import hunyuan_chat_template as chat_template

        add_generation_prompt = False

        default_system_message = [
            {
                "role": "system",
                "content": "You are a helpful AI assistant.",
            }
        ]

    # ================================================================
    print("Loading model")
    # device_map = "auto"
    device_map = "cuda"
    # torch_dtype=torch.float16
    torch_dtype = torch.bfloat16

    rank = torch.distributed.get_rank()

    audio_tokenizer = get_audio_tokenizer(
        args.audio_tokenizer_path, args.audio_tokenizer_type, flow_path=args.flow_path, rank=rank
    )

    tokenizer = AutoTokenizer.from_pretrained(
        args.model_name_or_path,
        trust_remote_code=True,
        chat_template=chat_template,
    )
    # print("tokenizer", tokenizer)

    model = AutoModelForCausalLM.from_pretrained(
        args.model_name_or_path,
        trust_remote_code=True,
        device_map=device_map,
        torch_dtype=torch_dtype,
        attn_implementation="flash_attention_2",
    ).eval()
    # print("model", model)

    model.generation_config = GenerationConfig.from_pretrained(
        args.model_name_or_path, trust_remote_code=True
    )

    model.generation_config.max_new_tokens = 4096
    model.generation_config.chat_format = "chatml"
    model.generation_config.max_window_size = 8192
    model.generation_config.use_cache = True
    model.generation_config.do_sample = False
    model.generation_config.pad_token_id = tokenizer.pad_token_id
    if model.config.model_type == "hunyuan":
        model.generation_config.eos_token_id = tokenizer.eos_id

    # ================================================================
    print("Loading data")
    dataset = ASRDataset(
        json_path=args.json_path,
        tokenizer=tokenizer,
        audio_tokenizer=audio_tokenizer,
        default_system_message=default_system_message,
        add_generation_prompt=add_generation_prompt,
    )

    dataloader = torch.utils.data.DataLoader(
        dataset=dataset,
        sampler=InferenceSampler(len(dataset)),
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=True,
        drop_last=False,
        collate_fn=partial(
            collate_fn,
        ),
    )

    # ================================================================
    outputs = inference(model, tokenizer, audio_tokenizer, dataloader, args.output_dir)

    torch.distributed.barrier()

    world_size = torch.distributed.get_world_size()
    merged_outputs = [None for _ in range(world_size)]
    torch.distributed.all_gather_object(merged_outputs, json.dumps(outputs))

    merged_outputs = [json.loads(_) for _ in merged_outputs]
    merged_outputs = [_ for _ in itertools.chain.from_iterable(merged_outputs)]

    if torch.distributed.get_rank() == 0:
        # json_name = Path("_".join(os.path.normpath(args.json_path).split(os.sep)[-2:])).stem
        json_name = Path(os.path.normpath(args.json_path).split(os.sep)[-1]).stem
        hyp_path = os.path.join(args.output_dir, f"{json_name}_hyp.txt")
        ref_path = os.path.join(args.output_dir, f"{json_name}_ref.txt")

        os.makedirs(os.path.dirname(ref_path), exist_ok=True)
        os.makedirs(os.path.dirname(hyp_path), exist_ok=True)

        hyp_file = open(hyp_path, "w")
        ref_file = open(ref_path, "w")

        for sample_idx, (hyp, ref) in enumerate(merged_outputs):
            hyp_file.write(f"{sample_idx} {hyp}" + "\n")
            ref_file.write(f"{sample_idx} {ref}" + "\n")

        hyp_file.close()
        ref_file.close()

        hyp_ref_path = os.path.join(args.output_dir, f"{json_name}_hyp_ref.json")
        hyp_ref_file = open(hyp_ref_path, "w")
        json.dump(merged_outputs, hyp_ref_file, indent=4)
        hyp_ref_file.close()

    torch.distributed.barrier()
    print("Done.")