Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,695 Bytes
52e4f53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import argparse
import itertools
import json
import os
import random
import sys
import uuid
from datetime import timedelta
from functools import partial
from pathlib import Path
import torch
import tqdm
from datasets import load_dataset
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
import torchaudio
from vita_audio.tokenizer import get_audio_tokenizer
def collate_fn(batches):
input_ids = [sample["input_ids"] for sample in batches]
refs = [sample["ref"] for sample in batches]
filenames = [sample["filename"] for sample in batches]
prompt_audio_path = [sample["prompt_audio_path"] for sample in batches]
return input_ids, refs, filenames, prompt_audio_path
class SeedTTSDataset(torch.utils.data.Dataset):
def __init__(
self,
data_path,
tokenizer,
audio_tokenizer,
default_system_message=None,
speaker_prompt=False,
add_generation_prompt=True,
):
self.data = []
meta_path = os.path.join(data_path, f"seedtts_testset/zh/meta.lst")
with open(meta_path, "r") as f:
lines = f.readlines()
for line in lines:
line = line.strip().split("|")
filename = line[0]
prompt_text = line[1]
prompt_audio = line[2]
text = line[3]
self.data.append(["zh", filename, prompt_text, prompt_audio, text])
meta_path = os.path.join(data_path, f"seedtts_testset/zh/hardcase.lst")
with open(meta_path, "r") as f:
lines = f.readlines()
for line in lines:
line = line.strip().split("|")
filename = line[0]
prompt_text = line[1]
prompt_audio = line[2]
text = line[3]
self.data.append(["hardcase", filename, prompt_text, prompt_audio, text])
meta_path = os.path.join(data_path, f"seedtts_testset/en/meta.lst")
with open(meta_path, "r") as f:
lines = f.readlines()
for line in lines:
line = line.strip().split("|")
filename = line[0]
prompt_text = line[1]
prompt_audio = line[2]
text = line[3]
self.data.append(["en", filename, prompt_text, prompt_audio, text])
self.tokenizer = tokenizer
self.audio_tokenizer = audio_tokenizer
self.default_system_message = default_system_message
self.add_generation_prompt = add_generation_prompt
self.data_path = data_path
self.speaker_prompt = speaker_prompt
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
sample = self.data[idx]
split, filename, prompt_text, prompt_audio, text = sample
messages = []
if self.default_system_message is not None:
messages = self.default_system_message + messages
if self.speaker_prompt:
if split == "hardcase":
prompt_audio_path = os.path.join(
self.data_path, "seedtts_testset", "zh", prompt_audio
)
else:
prompt_audio_path = os.path.join(
self.data_path, "seedtts_testset", split, prompt_audio
)
if self.audio_tokenizer.apply_to_role("system", is_discrete=True):
# discrete codec
prompt_audio_tokens = self.audio_tokenizer.encode(prompt_audio_path)
prompt_audio_tokens = "".join(f"<|audio_{i}|>" for i in prompt_audio_tokens)
prompt_text = f"Speaker Metadata:\nAudio: <|begin_of_audio|>{prompt_audio_tokens}<|end_of_audio|>\n"
if len(messages) > 0 and messages[0]["role"] == "system":
messages[0]["content"] += prompt_text
else:
messages.append(
{
"role": "system",
"content": prompt_text,
}
)
else:
prompt_audio_path = None
role = "user"
content = "Convert the text to speech.\n" + text
messages.append(
{
"role": role,
"content": content,
}
)
input_ids = self.tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=self.add_generation_prompt,
return_tensors="pt",
)
ref = text
return {
"input_ids": input_ids,
"ref": ref,
"filename": split + "/" + filename,
"prompt_audio_path": prompt_audio_path,
}
class InferenceSampler(torch.utils.data.sampler.Sampler):
def __init__(self, size):
self._size = int(size)
assert size > 0
self._rank = torch.distributed.get_rank()
self._world_size = torch.distributed.get_world_size()
self._local_indices = self._get_local_indices(size, self._world_size, self._rank)
@staticmethod
def _get_local_indices(total_size, world_size, rank):
shard_size = total_size // world_size
left = total_size % world_size
shard_sizes = [shard_size + int(r < left) for r in range(world_size)]
begin = sum(shard_sizes[:rank])
end = min(sum(shard_sizes[: rank + 1]), total_size)
return range(begin, end)
def __iter__(self):
yield from self._local_indices
def __len__(self):
return len(self._local_indices)
def inference(model, tokenizer, audio_tokenizer, dataloader, output_dir):
audio_offset = tokenizer.convert_tokens_to_ids("<|audio_0|>")
outputs = []
for _, (
batched_input_ids,
batched_ref,
batched_filename,
batched_prompt_audio_path,
) in enumerate(tqdm.tqdm(dataloader)):
for input_ids, ref, filename, prompt_audio_path in zip(
batched_input_ids, batched_ref, batched_filename, batched_prompt_audio_path
):
responses = model.generate(
input_ids=input_ids.cuda(),
# temperature=0.2,
# top_p=0.8,
# do_sample=False,
# temperature=1.0,
max_new_tokens=1024,
min_new_tokens=1,
)
response = responses[0][len(input_ids[0]) :]
text_tokens = []
audio_tokens = []
for token_id in response:
if token_id >= audio_offset:
audio_tokens.append(token_id - audio_offset)
else:
text_tokens.append(token_id)
if len(audio_tokens) == 0:
continue
tts_speech = audio_tokenizer.decode(audio_tokens, source_speech_16k=prompt_audio_path)
wav_path = os.path.join(output_dir, filename + ".wav")
os.makedirs(os.path.dirname(wav_path), exist_ok=True)
torchaudio.save(wav_path, tts_speech.unsqueeze(0), 22050, format="wav")
outputs.append((wav_path, filename))
print("")
print("=" * 100)
# print(f"{len(input_id)=}")
# print(f"{len(response)=}")
print(f"{tokenizer.decode(response, skip_special_tokens=False)}")
print(f"{filename=}")
return outputs
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="",
formatter_class=argparse.RawDescriptionHelpFormatter,
)
parser.add_argument("--model_name_or_path", type=str, required=True, help="model_name_or_path")
parser.add_argument(
"--audio_tokenizer_path", type=str, required=True, help="audio_tokenizer_path"
)
parser.add_argument(
"--audio_tokenizer_type", type=str, required=True, help="audio_tokenizer_type"
)
parser.add_argument("--flow_path", type=str, required=True, help="flow_path")
parser.add_argument("--data_path", type=str, required=True, help="data_path")
parser.add_argument("--output_dir", type=str, required=True, help="output_dir")
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_workers", type=int, default=0)
parser.add_argument("--speaker_prompt", action=argparse.BooleanOptionalAction, default=False)
args = parser.parse_args()
print(f"{args=}")
torch.distributed.init_process_group(
backend="nccl",
world_size=int(os.getenv("WORLD_SIZE", "1")),
rank=int(os.getenv("RANK", "0")),
timeout=timedelta(seconds=7200),
)
torch.cuda.set_device(int(os.getenv("LOCAL_RANK", 0)))
random.seed(42)
torch.manual_seed(42)
config = AutoConfig.from_pretrained(
args.model_name_or_path,
trust_remote_code=True,
)
# ================================================================
if "glm" in config.model_type.lower():
from get_chat_template import glm4_chat_template as chat_template
add_generation_prompt = True
default_system_message = [
{
"role": "system",
"content": "User will provide you with a speech instruction. Do it step by step. First, think about the instruction and respond in a interleaved manner, with 13 text token followed by 26 audio tokens.",
}
]
if "qwen2" in config.model_type.lower():
from get_chat_template import qwen2_chat_template as chat_template
add_generation_prompt = True
default_system_message = []
if "hunyuan" in config.model_type.lower():
from get_chat_template import hunyuan_chat_template as chat_template
add_generation_prompt = False
default_system_message = [
{
"role": "system",
"content": "You are a helpful AI assistant.",
}
]
# ================================================================
print("Loading model")
device = "cuda"
# device_map = "auto"
device_map = "cuda"
# torch_dtype=torch.float16
torch_dtype = torch.bfloat16
rank = torch.distributed.get_rank()
audio_tokenizer = get_audio_tokenizer(
args.audio_tokenizer_path, args.audio_tokenizer_type, flow_path=args.flow_path, rank=rank
)
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
trust_remote_code=True,
chat_template=chat_template,
)
# print("tokenizer", tokenizer)
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
trust_remote_code=True,
device_map=device_map,
torch_dtype=torch_dtype,
attn_implementation="flash_attention_2",
).eval()
# print("model", model)
model.generation_config = GenerationConfig.from_pretrained(
args.model_name_or_path, trust_remote_code=True
)
model.generation_config.max_new_tokens = 4096
model.generation_config.chat_format = "chatml"
model.generation_config.max_window_size = 8192
model.generation_config.use_cache = True
model.generation_config.do_sample = True
model.generation_config.pad_token_id = tokenizer.pad_token_id
if model.config.model_type == "hunyuan":
model.generation_config.eos_token_id = tokenizer.eos_id
# ================================================================
print("Loading data")
dataset = SeedTTSDataset(
data_path=args.data_path,
tokenizer=tokenizer,
audio_tokenizer=audio_tokenizer,
default_system_message=default_system_message,
speaker_prompt=args.speaker_prompt,
add_generation_prompt=add_generation_prompt,
)
dataloader = torch.utils.data.DataLoader(
dataset=dataset,
sampler=InferenceSampler(len(dataset)),
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
collate_fn=partial(
collate_fn,
),
)
# ================================================================
outputs = inference(model, tokenizer, audio_tokenizer, dataloader, args.output_dir)
torch.distributed.barrier()
world_size = torch.distributed.get_world_size()
merged_outputs = [None for _ in range(world_size)]
torch.distributed.all_gather_object(merged_outputs, json.dumps(outputs))
merged_outputs = [json.loads(_) for _ in merged_outputs]
merged_outputs = [_ for _ in itertools.chain.from_iterable(merged_outputs)]
torch.distributed.barrier()
print("Done.")
|