Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,224 Bytes
52e4f53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
audio_path = "介绍一下上海.wav"
# audio_path = "piano.mp3"
# audio_path = "hey-ya.opus"
# audio_path = "snoop.opus"
# audio_path = "swan.opus"
# audio_path = "青花瓷人声.mp3"
# audio_path = "恭喜你发财人声.mp3"
def encodec():
from datasets import load_dataset, Audio
from transformers import EncodecModel, AutoProcessor
# load a demonstration datasets
librispeech_dummy = load_dataset(
"hf-internal-testing/librispeech_asr_dummy", "clean", split="validation"
)
# load the model + processor (for pre-processing the audio)
model = EncodecModel.from_pretrained("facebook/encodec_24khz")
processor = AutoProcessor.from_pretrained("facebook/encodec_24khz")
# cast the audio data to the correct sampling rate for the model
librispeech_dummy = librispeech_dummy.cast_column(
"audio", Audio(sampling_rate=processor.sampling_rate)
)
audio_sample = librispeech_dummy[0]["audio"]["array"]
sampling_rate = librispeech_dummy[0]["audio"]["sampling_rate"]
print(f"len(audio_sample) / sampling_rate {len(audio_sample) / sampling_rate}")
# pre-process the inputs
inputs = processor(
raw_audio=audio_sample, sampling_rate=processor.sampling_rate, return_tensors="pt"
)
# explicitly encode then decode the audio inputs
encoder_outputs = model.encode(inputs["input_values"], inputs["padding_mask"], bandwidth=6)
print(f"encoder_outputs {encoder_outputs} {encoder_outputs.audio_codes.size()}")
audio_values = model.decode(
encoder_outputs.audio_codes, encoder_outputs.audio_scales, inputs["padding_mask"]
)[0]
print(f"audio_values {audio_values} {audio_values.size()}")
# or the equivalent with a forward pass
audio_values = model(inputs["input_values"], inputs["padding_mask"], bandwidth=6).audio_values
print(f"audio_values {audio_values} {audio_values.size()}")
return
from encodec import EncodecModel
from encodec.utils import convert_audio
import torchaudio
import torch
# Instantiate a pretrained EnCodec model
model = EncodecModel.encodec_model_24khz()
# The number of codebooks used will be determined bythe bandwidth selected.
# E.g. for a bandwidth of 6kbps, `n_q = 8` codebooks are used.
# Supported bandwidths are 1.5kbps (n_q = 2), 3 kbps (n_q = 4), 6 kbps (n_q = 8) and 12 kbps (n_q =16) and 24kbps (n_q=32).
# For the 48 kHz model, only 3, 6, 12, and 24 kbps are supported. The number
# of codebooks for each is half that of the 24 kHz model as the frame rate is twice as much.
model.set_target_bandwidth(6.0)
# Load and pre-process the audio waveform
wav, sr = torchaudio.load(audio_path)
wav = convert_audio(wav, sr, model.sample_rate, model.channels)
wav = wav.unsqueeze(0)
# Extract discrete codes from EnCodec
with torch.no_grad():
encoded_frames = model.encode(wav)
codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1) # [B, n_q, T]
print(f"codes {codes.size()}")
def xcodec2():
import torch
import soundfile as sf
from transformers import AutoConfig
from xcodec2.modeling_xcodec2 import XCodec2Model
model_path = "/data/models/HKUSTAudio/xcodec2"
model = XCodec2Model.from_pretrained(model_path)
model.eval().cuda()
wav, sr = sf.read(audio_path)
print(f"len(wav) / sr {len(wav) / sr}")
wav_tensor = torch.from_numpy(wav).float().unsqueeze(0) # Shape: (1, T)
with torch.no_grad():
# Only 16khz speech
# Only supports single input. For batch inference, please refer to the link below.
vq_code = model.encode_code(input_waveform=wav_tensor)
print("Code:", vq_code, vq_code.size())
recon_wav = model.decode_code(vq_code).cpu() # Shape: (1, 1, T')
sf.write(audio_path[:-4] + "_reconstructed_xcodec2.wav", recon_wav[0, 0, :].numpy(), sr)
print("Done! Check reconstructed.wav")
def glm4voice():
import sys
import torchaudio
sys.path.insert(0, "third_party/GLM-4-Voice/")
sys.path.insert(0, "third_party/GLM-4-Voice/cosyvoice/")
sys.path.insert(0, "third_party/GLM-4-Voice/third_party/Matcha-TTS/")
audio_tokenizer_path = "/data/models/THUDM/glm-4-voice-tokenizer/"
audio_tokenizer_type = "glm4voice"
flow_path = "/data/models/THUDM/glm-4-voice-decoder/"
rank = 0
from vita_audio.tokenizer import get_audio_tokenizer
audio_tokenizer = get_audio_tokenizer(
audio_tokenizer_path, audio_tokenizer_type, flow_path=flow_path, rank=rank
)
audio_tokens = audio_tokenizer.encode(audio_path)
print(f"audio_tokens {audio_tokens} {len(audio_tokens)}")
tts_speech = audio_tokenizer.decode(audio_tokens)
torchaudio.save(
audio_path[:-4] + "_reconstructed_glm4voice.wav",
tts_speech.unsqueeze(0),
22050,
format="wav",
)
def cosyvoice2():
audio_path = "介绍一下上海.wav"
import torch
import torchaudio
import sys
sys.path.insert(0, "third_party/CosyVoice/")
sys.path.insert(0, "third_party/CosyVoice/third_party/Matcha-TTS/")
audio_tokenizer_path = "/data/models/FunAudioLLM/CosyVoice2-0.5B/"
audio_tokenizer_type = "cosyvoice2"
rank = 0
from vita_audio.tokenizer import get_audio_tokenizer
audio_tokenizer = get_audio_tokenizer(audio_tokenizer_path, audio_tokenizer_type, rank=rank)
audio_tokens = audio_tokenizer.encode(audio_path)
import tqdm
import time
start = time.time()
for _ in tqdm.tqdm(range(100)):
# speech, sample_rate = torchaudio.load(audio_path)
# speech = speech[:, sample_rate * 30 : sample_rate * 60]
# torchaudio.save("tmp.wav", speech, sample_rate, format="wav")
# audio_path = "tmp.wav"
audio_tokens = audio_tokenizer.encode(audio_path)
print(f"audio_tokens {audio_tokens} {len(audio_tokens)}")
tts_speech = audio_tokenizer.decode(audio_tokens)
torchaudio.save(
audio_path[:-4] + "_reconstructed_cosyvoice2.wav",
tts_speech.unsqueeze(0),
audio_tokenizer.cosyvoice.sample_rate,
format="wav",
)
end = time.time()
print(end - start)
def dac():
import dac
from audiotools import AudioSignal
# Download a model
model_path = dac.utils.download(model_type="44khz")
model = dac.DAC.load(model_path)
model.to("cuda")
# Load audio signal file
signal = AudioSignal(audio_path)
# Encode audio signal as one long file
# (may run out of GPU memory on long files)
signal.to(model.device)
x = model.preprocess(signal.audio_data, signal.sample_rate)
z, codes, latents, _, _ = model.encode(x)
# Decode audio signal
y = model.decode(z)
# Alternatively, use the `compress` and `decompress` functions
# to compress long files.
signal = signal.cpu()
x = model.compress(signal)
print(f"x {x} {x.codes.size()}")
# Save and load to and from disk
x.save("compressed.dac")
x = dac.DACFile.load("compressed.dac")
# Decompress it back to an AudioSignal
y = model.decompress(x)
# Write to file
y.write(audio_path[:-4] + "_reconstructed_dac.wav")
def snac():
from snac import SNAC
import torchaudio
if torch.cuda.is_available():
model = SNAC.from_pretrained("/data/models/hubertsiuzdak/snac_24khz").eval().cuda()
else:
model = SNAC.from_pretrained("/data/models/hubertsiuzdak/snac_24khz").eval()
# audio = torch.randn(1, 1, 32000).cuda() # placeholder for actual audio with shape (B, 1, T)
audio, sampling_rate = torchaudio.load(audio_path)
print(f"audio {audio.size()}")
print(f"sampling_rate {sampling_rate}")
print(f"len(audio) / sampling_rate {len(audio[0]) / sampling_rate}")
print(f"model.sampling_rate {model.sampling_rate}")
audio = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=model.sampling_rate)(
audio
)
audio = audio.unsqueeze(0)
print(f"audio {audio.size()}")
if torch.cuda.is_available():
audio = audio.to("cuda")
with torch.inference_mode():
codes = model.encode(audio)
print(f"codes {codes} {[x.size() for x in codes]}")
codes = shift_code(codes, model.codebook_size, model.vq_strides)
print(f"codes {codes} {codes.size()}")
codes = inverse_shift_code(codes, model.codebook_size, model.vq_strides)
print(f"codes {codes} {[x.size() for x in codes]}")
audio_hat = model.decode(codes)
print(f"audio_hat {audio_hat.size()}")
torchaudio.save(
audio_path.split(".")[0] + "_reconstructed_snac.wav",
audio_hat.squeeze(0).cpu(),
model.sampling_rate,
format="wav",
)
def shift_code(codes, codebook_size, vq_strides):
# codes: [torch.Size([1, 43]), torch.Size([1, 86]), torch.Size([1, 172])]
# codes = torch.cat([x.reshape(1, -1, vq_strides[-i-1]) + i * codebook_size for i, x in enumerate(codes)], dim=-1).reshape(-1)
codes = [x.reshape(1, -1, s) for s, x in zip(vq_strides[::-1], codes)]
codes = torch.cat(
[
x + i * codebook_size
for i, x in enumerate(torch.cat(codes, dim=-1).chunk(sum(vq_strides), dim=-1))
],
dim=-1,
).reshape(-1)
return codes
def inverse_shift_code(codes, codebook_size, vq_strides):
# codes: torch.Size([301])
# codes = [x.reshape(1, -1) - i * codebook_size for i, x in enumerate(codes.reshape(1, -1, sum(vq_strides)).split(vq_strides[::-1], dim=-1))]
codes = torch.cat(
[
x - i * codebook_size
for i, x in enumerate(
codes.reshape(1, -1, sum(vq_strides)).chunk(sum(vq_strides), dim=-1)
)
],
dim=-1,
).split(vq_strides[::-1], dim=-1)
codes = [x.reshape(1, -1) for x in codes]
return codes
def sparktts():
import torch
import torchaudio
import soundfile
import sys
sys.path.insert(0, "/vita_audio/third_party/Spark-TTS/")
from sparktts.models.audio_tokenizer import BiCodecTokenizer
model_dir = "/data/models/SparkAudio/Spark-TTS-0.5B"
device = "cuda:0"
audio_tokenizer = BiCodecTokenizer(model_dir, device=device)
global_token_ids, semantic_token_ids = audio_tokenizer.tokenize(audio_path)
global_token_ids, _ = audio_tokenizer.tokenize(
"/data/vita_audio/third_party/CosyVoice/asset/zero_shot_prompt.wav"
)
global_token_ids = torch.zeros((1, 1, 32), dtype=torch.long)
print(f"{global_token_ids.size()}")
print(f"{semantic_token_ids.size()}")
wav = audio_tokenizer.detokenize(
global_token_ids.to(device).squeeze(0),
semantic_token_ids.to(device),
)
wav = torch.tensor(wav).unsqueeze(0)
print(f"{wav.shape}")
torchaudio.save(
audio_path.split(".")[0] + "_reconstructed_sparktts.wav",
wav,
audio_tokenizer.config["sample_rate"],
format="wav",
)
# torchaudio.save(audio_path.split(".")[0] + "_reconstructed_sparktts.wav", wav, 16000, format="wav")
# soundfile.write(audio_path.split(".")[0] + "_reconstructed_sparktts.wav", wav, samplerate=16000)
def stable_codec():
import torch
import torchaudio
from stable_codec import StableCodec
model = StableCodec(
model_config_path="/data/models/stabilityai/stable-codec-speech-16k/model_config.json",
ckpt_path="/data/models/stabilityai/stable-codec-speech-16k/model.ckpt",
# ckpt_path="<path-to-checkpoint>", # optional, can be `None`,
device=torch.device("cuda"),
)
latents, tokens = model.encode(audio_path)
print(f"{latents.size()=}")
print(f"{tokens.size()=}")
print(f"{tokens=}")
decoded_audio = model.decode(tokens)
print(f"{decoded_audio.size()=}")
# while True:
torchaudio.save(
audio_path.split(".")[0] + "_reconstructed_stable_codec.wav",
decoded_audio.squeeze(0).cpu(),
model.sample_rate,
)
if __name__ == "__main__":
# encodec()
# xcodec2()
# cosyvoice2()
# glm4voice()
# dac()
# snac()
# sparktts()
stable_codec()
|