File size: 27,963 Bytes
52e4f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
# coding=utf-8
# Copyright 2020-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The Trainer class, to easily train a 🤗 Transformers from scratch or finetune it on a new task.
"""

import contextlib
import copy
import functools
import glob
import importlib.metadata
import inspect
import json
import math
import os
import random
import re
import shutil
import sys
import tempfile
import time
import warnings
from collections.abc import Mapping
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Type, Union


# Integrations must be imported before ML frameworks:
# isort: off
from transformers.integrations import (
    get_reporting_integration_callbacks,
    hp_params,
)

# isort: on

import huggingface_hub.utils as hf_hub_utils
import numpy as np
import torch
import torch.distributed as dist
from huggingface_hub import ModelCard, create_repo, upload_folder
from packaging import version
from torch import nn
from torch.utils.data import DataLoader, Dataset, IterableDataset, RandomSampler, SequentialSampler

from transformers import __version__
from transformers.configuration_utils import PretrainedConfig
from transformers.data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator
from transformers.debug_utils import DebugOption, DebugUnderflowOverflow
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from transformers.feature_extraction_utils import FeatureExtractionMixin
from transformers.hyperparameter_search import ALL_HYPERPARAMETER_SEARCH_BACKENDS, default_hp_search_backend
from transformers.image_processing_utils import BaseImageProcessor
from transformers.integrations.deepspeed import deepspeed_init, deepspeed_load_checkpoint, is_deepspeed_available
from transformers.integrations.tpu import tpu_spmd_dataloader
from transformers.modelcard import TrainingSummary
from transformers.modeling_utils import PreTrainedModel, load_sharded_checkpoint, unwrap_model
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_MAPPING_NAMES,
)
from transformers.optimization import Adafactor, get_scheduler
from transformers.processing_utils import ProcessorMixin
from transformers.pytorch_utils import (
    ALL_LAYERNORM_LAYERS,
    is_torch_greater_or_equal_than_2_3,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_callback import (
    CallbackHandler,
    DefaultFlowCallback,
    ExportableState,
    PrinterCallback,
    ProgressCallback,
    TrainerCallback,
    TrainerControl,
    TrainerState,
)
from transformers.trainer_pt_utils import (
    DistributedTensorGatherer,
    EvalLoopContainer,
    IterableDatasetShard,
    LabelSmoother,
    LayerWiseDummyOptimizer,
    LengthGroupedSampler,
    SequentialDistributedSampler,
    distributed_broadcast_scalars,
    distributed_concat,
    find_batch_size,
    get_model_param_count,
    get_module_class_from_name,
    get_parameter_names,
    nested_concat,
    nested_detach,
    nested_numpify,
    nested_xla_mesh_reduce,
    reissue_pt_warnings,
    remove_dummy_checkpoint,
)
from transformers.trainer_utils import (
    PREFIX_CHECKPOINT_DIR,
    BestRun,
    EvalLoopOutput,
    EvalPrediction,
    HPSearchBackend,
    HubStrategy,
    PredictionOutput,
    RemoveColumnsCollator,
    SaveStrategy,
    TrainerMemoryTracker,
    TrainOutput,
    check_target_module_exists,
    default_compute_objective,
    denumpify_detensorize,
    enable_full_determinism,
    find_executable_batch_size,
    get_last_checkpoint,
    has_length,
    neftune_post_forward_hook,
    number_of_arguments,
    seed_worker,
    set_seed,
    speed_metrics,
)
from transformers.training_args import OptimizerNames, ParallelMode, TrainingArguments
from transformers.utils import (
    ADAPTER_CONFIG_NAME,
    ADAPTER_SAFE_WEIGHTS_NAME,
    ADAPTER_WEIGHTS_NAME,
    CONFIG_NAME,
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
    XLA_FSDPV2_MIN_VERSION,
    PushInProgress,
    PushToHubMixin,
    can_return_loss,
    find_labels,
    is_accelerate_available,
    is_apex_available,
    is_bitsandbytes_available,
    is_datasets_available,
    is_galore_torch_available,
    is_grokadamw_available,
    is_in_notebook,
    is_ipex_available,
    is_liger_kernel_available,
    is_lomo_available,
    is_peft_available,
    is_safetensors_available,
    is_sagemaker_dp_enabled,
    is_sagemaker_mp_enabled,
    is_schedulefree_available,
    is_torch_compile_available,
    is_torch_mlu_available,
    is_torch_mps_available,
    is_torch_musa_available,
    is_torch_neuroncore_available,
    is_torch_npu_available,
    is_torch_xla_available,
    is_torch_xpu_available,
    is_torchao_available,
    logging,
    strtobool,
)
from transformers.utils.deprecation import deprecate_kwarg
from transformers.utils.quantization_config import QuantizationMethod


DEFAULT_CALLBACKS = [DefaultFlowCallback]
DEFAULT_PROGRESS_CALLBACK = ProgressCallback

if is_in_notebook():
    from transformers.utils.notebook import NotebookProgressCallback

    DEFAULT_PROGRESS_CALLBACK = NotebookProgressCallback

if is_apex_available():
    from apex import amp

if is_datasets_available():
    import datasets

if is_torch_xla_available():
    import torch_xla.core.xla_model as xm
    import torch_xla.debug.metrics as met
    from torch_xla import __version__ as XLA_VERSION

    IS_XLA_FSDPV2_POST_2_2 = version.parse(XLA_VERSION) >= version.parse(XLA_FSDPV2_MIN_VERSION)
    if IS_XLA_FSDPV2_POST_2_2:
        import torch_xla.distributed.spmd as xs
        import torch_xla.runtime as xr
else:
    IS_XLA_FSDPV2_POST_2_2 = False


if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp
    from smdistributed.modelparallel import __version__ as SMP_VERSION

    IS_SAGEMAKER_MP_POST_1_10 = version.parse(SMP_VERSION) >= version.parse("1.10")

    from transformers.trainer_pt_utils import smp_forward_backward, smp_forward_only, smp_gather, smp_nested_concat
else:
    IS_SAGEMAKER_MP_POST_1_10 = False


if is_safetensors_available():
    import safetensors.torch

if is_peft_available():
    from peft import PeftModel


if is_accelerate_available():
    from accelerate import Accelerator, skip_first_batches
    from accelerate import __version__ as accelerate_version
    from accelerate.state import AcceleratorState
    from accelerate.utils import (
        DistributedDataParallelKwargs,
        DistributedType,
        load_fsdp_model,
        load_fsdp_optimizer,
        save_fsdp_model,
        save_fsdp_optimizer,
    )

    DATA_SAMPLERS = [RandomSampler]
    if version.parse(accelerate_version) > version.parse("0.23.0"):
        from accelerate.data_loader import SeedableRandomSampler

        DATA_SAMPLERS += [SeedableRandomSampler]

    if is_deepspeed_available():
        from accelerate.utils import DeepSpeedSchedulerWrapper

if is_accelerate_available("0.28.0"):
    from accelerate.utils import DataLoaderConfiguration


def _is_peft_model(model):
    if is_peft_available():
        classes_to_check = (PeftModel,) if is_peft_available() else ()
        # Here we also check if the model is an instance of `PeftMixedModel` introduced in peft>=0.7.0: https://github.com/huggingface/transformers/pull/28321
        if version.parse(importlib.metadata.version("peft")) >= version.parse("0.7.0"):
            from peft import PeftMixedModel

            classes_to_check = (*classes_to_check, PeftMixedModel)
        return isinstance(model, classes_to_check)
    return False


def _get_fsdp_ckpt_kwargs():
    # TODO: @AjayP13, @younesbelkada replace this check with version check at the next `accelerate` release
    if is_accelerate_available() and "adapter_only" in list(inspect.signature(save_fsdp_model).parameters):
        return {"adapter_only": True}
    else:
        return {}


def safe_globals():
    # Starting from version 2.4 PyTorch introduces a check for the objects loaded
    # with torch.load(weights_only=True). Starting from 2.6 weights_only=True becomes
    # a default and requires allowlisting of objects being loaded.
    # See: https://github.com/pytorch/pytorch/pull/137602
    # See: https://pytorch.org/docs/stable/notes/serialization.html#torch.serialization.add_safe_globals
    # See: https://github.com/huggingface/accelerate/pull/3036
    if version.parse(torch.__version__).release < version.parse("2.6").release:
        return contextlib.nullcontext()

    np_core = np._core if version.parse(np.__version__) >= version.parse("2.0.0") else np.core
    allowlist = [np_core.multiarray._reconstruct, np.ndarray, np.dtype]
    # numpy >1.25 defines numpy.dtypes.UInt32DType, but below works for
    # all versions of numpy
    allowlist += [type(np.dtype(np.uint32))]

    return torch.serialization.safe_globals(allowlist)


if TYPE_CHECKING:
    import optuna

    if is_datasets_available():
        import datasets

logger = logging.get_logger(__name__)
logger.setLevel("INFO")


# Name of the files used for checkpointing
TRAINING_ARGS_NAME = "training_args.bin"
TRAINER_STATE_NAME = "trainer_state.json"
OPTIMIZER_NAME = "optimizer.pt"
OPTIMIZER_NAME_BIN = "optimizer.bin"
SCHEDULER_NAME = "scheduler.pt"
SCALER_NAME = "scaler.pt"
FSDP_MODEL_NAME = "pytorch_model_fsdp"


DATA_PRINT_ONCE = True
BATCH = None
def print_batch(batch, tokenizer, args):

    global DATA_PRINT_ONCE
    global BATCH

    if batch is not None:
        BATCH = batch
    else:
        batch = BATCH
        DATA_PRINT_ONCE = True

    if batch is None:
        return

    if DATA_PRINT_ONCE:

        global_rank = torch.distributed.get_rank()
        f = open(os.path.join(args.output_dir, f"print_batch_{global_rank}.log"), "a")

        torch.set_printoptions(threshold=100_000)

        if "loss_mask" in batch and batch["loss_mask"] is not None:
            loss_mask = batch["loss_mask"]
            print(f"loss_mask {loss_mask} {loss_mask.size()}", file=f)

        if "position_ids" in batch and batch["position_ids"] is not None:
            position_ids = batch["position_ids"]
            print(f"position_ids {position_ids} {position_ids.size()}", file=f)

        if "attention_mask" in batch and batch["attention_mask"] is not None:
            attention_mask = batch["attention_mask"]
            if isinstance(attention_mask, list):
                attention_mask = attention_mask[0]
            print(f"attention_mask {attention_mask} {attention_mask.size()}", file=f)

        if "input_ids" in batch and batch["input_ids"] is not None:
            tokens = batch["input_ids"]
            print(f"tokens {tokens} {tokens.size()}", file=f)

            tokens_ = tokens.cpu().clone().detach()
            tokens_ = tokenizer.batch_decode(tokens_.tolist(), skip_special_tokens=False)
            print(f"tokens_ {tokens_[:]}", file=f)

        if "labels" in batch and batch["labels"] is not None:
            labels = batch["labels"]
            print(f"labels {labels} {labels.size()}", file=f)

            labels_ = labels.cpu().clone().detach()
            labels_[labels_==-100] = tokenizer("-", add_special_tokens=False).input_ids[0]
            labels_ = tokenizer.batch_decode(labels_.tolist(), skip_special_tokens=False)
            print(f"labels {labels_}", file=f)

            # labels__ = labels.cpu().clone().detach()
            # labels__[loss_mask.to(torch.int64)==0] = tokenizer("-", add_special_tokens=False).input_ids[0]
            # labels__ = tokenizer.batch_decode(labels__.tolist(), skip_special_tokens=False)
            # print(f"labels__ {labels__}", file=f)

        for k, v in batch.items():
            if isinstance(v, torch.Tensor):
                print(f"{k} {v} {v.size()}", file=f)
            else:
                print(f"{k} {v}", file=f)

        f.close()

    DATA_PRINT_ONCE = False


from transformers import Trainer as HFTrainer
class Trainer(HFTrainer):

    def get_train_dataloader(self) -> DataLoader:
        """
        Returns the training [`~torch.utils.data.DataLoader`].

        Will use no sampler if `train_dataset` does not implement `__len__`, a random sampler (adapted to distributed
        training if necessary) otherwise.

        Subclass and override this method if you want to inject some custom behavior.
        """
        if self.train_dataset is None:
            raise ValueError("Trainer: training requires a train_dataset.")

        train_dataset = self.train_dataset
        data_collator = self.data_collator
        if is_datasets_available() and isinstance(train_dataset, datasets.Dataset):
            train_dataset = self._remove_unused_columns(train_dataset, description="training")
        else:
            data_collator = self._get_collator_with_removed_columns(data_collator, description="training")

        dataloader_params = {
            "batch_size": self._train_batch_size,
            "collate_fn": data_collator,
            "num_workers": self.args.dataloader_num_workers,
            "pin_memory": self.args.dataloader_pin_memory,
            "persistent_workers": self.args.dataloader_persistent_workers,
            "multiprocessing_context": "spawn",
        }

        if not isinstance(train_dataset, torch.utils.data.IterableDataset):
            dataloader_params["sampler"] = self._get_train_sampler()
            dataloader_params["drop_last"] = self.args.dataloader_drop_last
            dataloader_params["worker_init_fn"] = seed_worker
            dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor

        return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params))


    def create_optimizer(self):
        """
        Setup the optimizer.

        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
        Trainer's init through `optimizers`, or subclass and override this method in a subclass.
        """
        opt_model = self.model_wrapped if is_sagemaker_mp_enabled() else self.model

        if self.optimizer is None:
            decay_parameters = self.get_decay_parameter_names(opt_model)

            if self.args.vision_model_lr_mult != 1.0 or self.args.vision_model_lr_decay_rate != 1.0:
                vision_parameters = [name for name, _ in opt_model.named_parameters() if "vision_model" in name]
                logger.info(f"{vision_parameters=}")
            else:
                vision_parameters = []

            if self.args.mtp_model_lr_mult != 1.0:
                mtp_parameters = []
                mtp_names = ["mtp"]
                num_nextn_predict_layers = self.model.config.num_nextn_predict_layers
                num_hidden_layers = self.model.config.num_hidden_layers
                for mtp_idx in range(num_nextn_predict_layers):
                    layer_idx = num_hidden_layers - num_nextn_predict_layers + mtp_idx
                    mtp_names.append(f"model.layers.{layer_idx}")
                for name, param in opt_model.named_parameters():
                    if any([x in name for x in mtp_names]):
                        mtp_parameters.append(name)
                logger.info(f"{mtp_parameters=}")
            else:
                mtp_parameters = []

            exclude_parameters = vision_parameters + mtp_parameters

            optimizer_grouped_parameters = [
                {
                    "params": [
                        p for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad and n not in exclude_parameters)
                    ],
                    "weight_decay": self.args.weight_decay,
                },
                {
                    "params": [
                        p for n, p in opt_model.named_parameters() if (n not in decay_parameters and p.requires_grad and n not in exclude_parameters)
                    ],
                    "weight_decay": 0.0,
                },
            ]

            if self.args.vision_model_lr_decay_rate != 1.0:
                for n, p in opt_model.named_parameters():
                    if p.requires_grad and n in vision_parameters:
                        pass
                    else:
                        continue

                    if n in decay_parameters:
                        weight_decay = self.args.weight_decay
                    else:
                        weight_decay = 0.0

                    lr = self.args.learning_rate * get_vit_lr_decay_rate(n, opt_model.config.visual.num_hidden_layers, self.args.vision_model_lr_decay_rate)

                    optimizer_grouped_parameters.append(
                        {
                            "params": [p],
                            "weight_decay": weight_decay,
                            "lr": lr,
                        }
                    )
                    logger.info(f"create_optimizer name {n} weight_decay {weight_decay} lr {lr}")

            elif self.args.vision_model_lr_mult != 1.0:
                optimizer_grouped_parameters.extend(
                    [
                        {
                            "params": [
                                p for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad and n in vision_parameters)
                            ],
                            "weight_decay": self.args.weight_decay,
                            "lr": self.args.learning_rate * self.args.vision_model_lr_mult,
                        },
                        {
                            "params": [
                                p for n, p in opt_model.named_parameters() if (n not in decay_parameters and p.requires_grad and n in vision_parameters)
                            ],
                            "weight_decay": 0.0,
                            "lr": self.args.learning_rate * self.args.vision_model_lr_mult,
                        },
                    ]
                )
                logger.info(f"create_optimizer name {[n for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad and n in vision_parameters)]} weight_decay {self.args.weight_decay} lr_mult {self.args.vision_model_lr_mult}")
                logger.info(f"create_optimizer name {[n for n, p in opt_model.named_parameters() if (n not in decay_parameters and p.requires_grad and n in vision_parameters)]} weight_decay {0.0} lr_mult {self.args.vision_model_lr_mult}")

            if self.args.mtp_model_lr_mult != 1.0:
                optimizer_grouped_parameters.extend(
                    [
                        {
                            "params": [
                                p for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad and n in mtp_parameters)
                            ],
                            "weight_decay": self.args.weight_decay,
                            "lr": self.args.learning_rate * self.args.mtp_model_lr_mult,
                        },
                        {
                            "params": [
                                p for n, p in opt_model.named_parameters() if (n not in decay_parameters and p.requires_grad and n in mtp_parameters)
                            ],
                            "weight_decay": 0.0,
                            "lr": self.args.learning_rate * self.args.mtp_model_lr_mult,
                        },
                    ]
                )
                logger.info(f"create_optimizer name {[n for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad and n in mtp_parameters)]} weight_decay {self.args.weight_decay} lr_mult {self.args.mtp_model_lr_mult}")
                logger.info(f"create_optimizer name {[n for n, p in opt_model.named_parameters() if (n not in decay_parameters and p.requires_grad and n in mtp_parameters)]} weight_decay {0.0} lr_mult {self.args.mtp_model_lr_mult}")

            if self.optimizer_cls_and_kwargs is not None:
                optimizer_cls, optimizer_kwargs = self.optimizer_cls_and_kwargs
            else:
                optimizer_cls, optimizer_kwargs = self.get_optimizer_cls_and_kwargs(self.args, opt_model)

            # Overwrite `params` in case it's created by `get_optimizer_cls_and_kwargs`
            # e.g. for GaLore optimizer.
            if "params" in optimizer_kwargs:
                optimizer_grouped_parameters = optimizer_kwargs.pop("params")

            # Overwrite `model` in case it's created by `get_optimizer_cls_and_kwargs`
            # e.g. for LOMO optimizer.
            if "model" in optimizer_kwargs:
                optimizer_grouped_parameters = optimizer_kwargs.pop("model")

            # For layer-wise dummy optimizers we overwrite optimizer_grouped_parameters with `optimizer_dict`
            # to avoid arguments conflicts.
            if "optimizer_dict" in optimizer_kwargs:
                optimizer_grouped_parameters = optimizer_kwargs.pop("optimizer_dict")

            self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)

            if optimizer_cls.__name__ == "Adam8bit":
                import bitsandbytes

                manager = bitsandbytes.optim.GlobalOptimManager.get_instance()

                skipped = 0
                for module in opt_model.modules():
                    if isinstance(module, nn.Embedding):
                        skipped += sum({p.data_ptr(): p.numel() for p in module.parameters()}.values())
                        logger.info(f"skipped {module}: {skipped/2**20}M params")
                        manager.register_module_override(module, "weight", {"optim_bits": 32})
                        logger.debug(f"bitsandbytes: will optimize {module} in fp32")
                logger.info(f"skipped: {skipped/2**20}M params")

        if is_sagemaker_mp_enabled():
            self.optimizer = smp.DistributedOptimizer(self.optimizer)

        return self.optimizer

































































































































































































































































































































































































































































































































    def training_step(
        self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch=None
    ) -> torch.Tensor:
        """
        Perform a training step on a batch of inputs.

        Subclass and override to inject custom behavior.

        Args:
            model (`nn.Module`):
                The model to train.
            inputs (`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument `labels`. Check your model's documentation for all accepted arguments.

        Return:
            `torch.Tensor`: The tensor with training loss on this batch.
        """
        print_batch(inputs, self.processing_class, self.args)

        model.train()
        if hasattr(self.optimizer, "train") and callable(self.optimizer.train):
            self.optimizer.train()

        inputs = self._prepare_inputs(inputs)
        if is_sagemaker_mp_enabled():
            loss_mb = smp_forward_backward(model, inputs, self.args.gradient_accumulation_steps)
            return loss_mb.reduce_mean().detach().to(self.args.device)

        with self.compute_loss_context_manager():
            loss = self.compute_loss(model, inputs, num_items_in_batch=num_items_in_batch)

        del inputs
        if (
            self.args.torch_empty_cache_steps is not None
            and self.state.global_step % self.args.torch_empty_cache_steps == 0
        ):
            if is_torch_xpu_available():
                torch.xpu.empty_cache()
            elif is_torch_mlu_available():
                torch.mlu.empty_cache()
            elif is_torch_musa_available():
                torch.musa.empty_cache()
            elif is_torch_npu_available():
                torch.npu.empty_cache()
            elif is_torch_mps_available(min_version="2.0"):
                torch.mps.empty_cache()
            elif is_torch_hpu_available():
                logger.warning(
                    "`torch_empty_cache_steps` is set but HPU device/backend does not support empty_cache()."
                )
            else:
                torch.cuda.empty_cache()

        kwargs = {}

        # For LOMO optimizers you need to explicitly use the learnign rate
        if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]:
            kwargs["learning_rate"] = self._get_learning_rate()

        if self.args.n_gpu > 1:
            loss = loss.mean()  # mean() to average on multi-gpu parallel training

        if self.use_apex:
            with amp.scale_loss(loss, self.optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            # Finally we need to normalize the loss for reporting
            if not self.model_accepts_loss_kwargs and self.compute_loss_func is None:
                loss = loss / self.args.gradient_accumulation_steps

            # Turning off loss scaling w.r.t. gradient accumulation when DeepSpeed is enabled
            # https://github.com/huggingface/transformers/pull/35808
            if self.accelerator.distributed_type == DistributedType.DEEPSPEED:
                kwargs["scale_wrt_gas"] = False

            self.accelerator.backward(loss, **kwargs)

            return loss.detach()


    def get_batch_samples(self, epoch_iterator, num_batches):
        batch_samples = []
        num_items_in_batch = None
        for _ in range(num_batches):
            try:
                while True:
                    batch_sample = next(epoch_iterator)
                    if "input_ids" in batch_sample:
                        break
                batch_samples += [batch_sample]
            except StopIteration:
                break

        if len(batch_samples) > 0 and "labels" in batch_samples[0]:
            # For now we don't support object detection
            try:
                num_items_in_batch = sum([(batch["labels"].ne(-100)).sum() for batch in batch_samples])
            except (TypeError, AttributeError):
                pass

        if self.args.average_tokens_across_devices and num_items_in_batch is not None:
            num_items_in_batch = self.accelerator.gather(num_items_in_batch).sum().item()

        if torch.is_tensor(num_items_in_batch):
            num_items_in_batch = num_items_in_batch.item()

        return batch_samples, num_items_in_batch


def get_vit_lr_decay_rate(name, num_layers, lr_decay_rate):

    layer_id = num_layers + 1
    if "vision_model." in name:
        if ".position_embedding." in name or ".conv1." in name:
            layer_id = 0
        elif ".layers." in name:
            layer_id = int(name[name.find(".layers.") :].split(".")[2]) + 1

    return lr_decay_rate ** (num_layers + 1 - layer_id)