File size: 4,599 Bytes
52e4f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import logging
import os
import uuid

import torch

from .constants import (
    AUD_END_TOKEN,
    AUD_START_TOKEN,
    AUD_TAG_TOKEN,
    BOX_END_TOKEN,
    BOX_START_TOKEN,
    IMG_CONTEXT_TOKEN,
    IMG_END_TOKEN,
    IMG_START_TOKEN,
    IMG_TAG_TOKEN,
    PATCH_CONTEXT_TOKEN,
    PATCH_END_TOKEN,
    PATCH_START_TOKEN,
    QUAD_END_TOKEN,
    QUAD_START_TOKEN,
    REF_END_TOKEN,
    REF_START_TOKEN,
    VID_CONTEXT_TOKEN,
    VID_END_TOKEN,
    VID_START_TOKEN,
    VID_TAG_TOKEN,
)

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)


def update_tokenizer_for_cosyvoice2(tokenizer):
    token_list = [
        IMG_START_TOKEN,
        IMG_END_TOKEN,
        IMG_CONTEXT_TOKEN,
        VID_START_TOKEN,
        VID_END_TOKEN,
        VID_CONTEXT_TOKEN,
        PATCH_START_TOKEN,
        PATCH_END_TOKEN,
        PATCH_CONTEXT_TOKEN,
        AUD_START_TOKEN,
        AUD_END_TOKEN,
        QUAD_START_TOKEN,
        QUAD_END_TOKEN,
        REF_START_TOKEN,
        REF_END_TOKEN,
        BOX_START_TOKEN,
        BOX_END_TOKEN,
        IMG_TAG_TOKEN,
        VID_TAG_TOKEN,
        AUD_TAG_TOKEN,
    ]
    num_new_tokens = tokenizer.add_tokens(token_list, special_tokens=True)

    token_list = [f"<|audio_{i}|>" for i in range(6561)]
    num_new_tokens = tokenizer.add_tokens(token_list, special_tokens=False)

    # logger.info(f"tokenizer {tokenizer}")
    return tokenizer


class CosyVoice2Tokenizer:
    def __init__(self, model_name_or_path, rank=None):
        self.model_name_or_path = model_name_or_path

        if rank is None and torch.distributed.is_initialized():
            rank = torch.distributed.get_rank()
            self.rank = rank % 8
        else:
            self.rank = rank
        logger.info(f"{self.rank=}")

        self.is_discrete = True
        self.is_contiguous = False

        #                            T   A
        text_audio_interval_ratio = [13, 26]

        self.text_audio_interval_ratio = text_audio_interval_ratio

    def load_model(self):
        if hasattr(self, "cosyvoice"):
            return

        logger.info("Loading CosyVoice2Tokenizer")
        from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
        from cosyvoice.utils.file_utils import load_wav

        if self.rank is not None:
            torch.cuda.set_device(self.rank)
        else:
            import os

            os.environ["CUDA_VISIBLE_DEVICES"] = ""
        print(f"{self.rank}")

        self.cosyvoice = CosyVoice2(
            self.model_name_or_path, load_jit=False, load_trt=False, fp16=True
        )
        del self.cosyvoice.model.llm

        self.load_wav = load_wav

    def encode(self, audio_path, **kwargs):
        if not hasattr(self, "cosyvoice"):
            self.load_model()

        speech_16k = self.load_wav(audio_path, 16000)

        try:
            speech_token, speech_token_len = self.cosyvoice.frontend._extract_speech_token(
                speech_16k
            )
            speech_token = speech_token[0].cpu().tolist()
        except Exception as error:
            # logger.info("error", error)
            speech_token = []
        # logger.info(f"speech_token {speech_token}")

        return speech_token

    def decode(self, prompt_speech_token, source_speech_16k=None):
        if not hasattr(self, "cosyvoice"):
            self.load_model()

        prompt_speech_token = torch.tensor(prompt_speech_token).unsqueeze(0)

        flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int32)

        prompt_speech_feat = torch.zeros(1, 0, 80)

        if source_speech_16k is None:
            flow_embedding = torch.zeros(1, 192)
        else:
            flow_embedding = self.cosyvoice.frontend._extract_spk_embedding(source_speech_16k)

        this_uuid = str(uuid.uuid1())
        this_uuid = "abc"
        self.cosyvoice.model.hift_cache_dict[this_uuid] = None

        token_offset = 0

        tts_speech = self.cosyvoice.model.token2wav(
            token=prompt_speech_token,
            prompt_token=flow_prompt_speech_token,
            prompt_feat=prompt_speech_feat,
            embedding=flow_embedding,
            uuid=this_uuid,
            token_offset=token_offset,
            finalize=True,
        )

        tts_speech = tts_speech.squeeze().cpu()

        return tts_speech

    def apply_to_role(self, role, **kwargs):
        is_discrete = kwargs.get("is_discrete", False)
        if is_discrete:
            return True

        is_contiguous = kwargs.get("is_contiguous", False)
        if is_contiguous:
            return False

        return True