File size: 5,545 Bytes
52e4f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import logging
import os
import uuid

import torch

import torchaudio

from .constants import (
    AUD_CONTEXT_TOKEN,
    AUD_END_TOKEN,
    AUD_START_TOKEN,
    AUD_TAG_TOKEN,
    BOX_END_TOKEN,
    BOX_START_TOKEN,
    IMG_CONTEXT_TOKEN,
    IMG_END_TOKEN,
    IMG_START_TOKEN,
    IMG_TAG_TOKEN,
    PATCH_CONTEXT_TOKEN,
    PATCH_END_TOKEN,
    PATCH_START_TOKEN,
    QUAD_END_TOKEN,
    QUAD_START_TOKEN,
    REF_END_TOKEN,
    REF_START_TOKEN,
    VID_CONTEXT_TOKEN,
    VID_END_TOKEN,
    VID_START_TOKEN,
    VID_TAG_TOKEN,
)

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)


def update_tokenizer_for_sensevoice_sparktts(tokenizer):
    token_list = [
        IMG_START_TOKEN,
        IMG_END_TOKEN,
        IMG_CONTEXT_TOKEN,
        VID_START_TOKEN,
        VID_END_TOKEN,
        VID_CONTEXT_TOKEN,
        PATCH_START_TOKEN,
        PATCH_END_TOKEN,
        PATCH_CONTEXT_TOKEN,
        AUD_START_TOKEN,
        AUD_END_TOKEN,
        AUD_CONTEXT_TOKEN,
        QUAD_START_TOKEN,
        QUAD_END_TOKEN,
        REF_START_TOKEN,
        REF_END_TOKEN,
        BOX_START_TOKEN,
        BOX_END_TOKEN,
        IMG_TAG_TOKEN,
        VID_TAG_TOKEN,
        AUD_TAG_TOKEN,
    ]
    num_new_tokens = tokenizer.add_tokens(token_list, special_tokens=True)

    token_list = [f"<|audio_{i}|>" for i in range(8192)]
    num_new_tokens = tokenizer.add_tokens(token_list, special_tokens=False)

    # logger.info(f"tokenizer {tokenizer}")
    return tokenizer


class SenseVoiceSparkTTSTokenizer:
    def __init__(self, model_name_or_path, rank=None):
        self.model_name_or_path = model_name_or_path

        if rank is None and torch.distributed.is_initialized():
            rank = torch.distributed.get_rank()
            self.rank = rank % 8
        else:
            self.rank = rank
        logger.info(f"{self.rank=}")

        self.sampling_rate = 16000

        self.is_discrete = True
        self.is_contiguous = True

        #                            T  A   T  A
        text_audio_interval_ratio = [1, 10, 1, 10]

        self.text_audio_interval_ratio = text_audio_interval_ratio

    def load_model(self):
        if hasattr(self, "model"):
            return

        if self.rank is not None:
            self.device = f"cuda:{self.rank}"
            torch.cuda.set_device(self.rank)
        else:
            self.device = "cpu"
        logger.info(f"{self.device=}")

        logger.info("Loading SenseVoiceSmall")
        from funasr.models.sense_voice.model import SenseVoiceSmall

        model_dir = "/data/models/FunAudioLLM/SenseVoiceSmall/"
        _, self.kwargs = SenseVoiceSmall.from_pretrained(model=model_dir, device=self.device)
        logger.info("Loading SenseVoiceSmall Done")

        logger.info("Loading BiCodecTokenizer")
        from sparktts.models.audio_tokenizer import BiCodecTokenizer

        model_dir = "/data/models/SparkAudio/Spark-TTS-0.5B/"
        # import time
        # import random
        # time.sleep(self.rank * 2 + random.randint(3, 9))
        self.model = BiCodecTokenizer(model_dir, device=self.device)
        logger.info("Loading BiCodecTokenizer Done")

    def encode(self, audio_path, is_discrete=False, is_contiguous=True, **kwargs):
        if not hasattr(self, "model"):
            self.load_model()

        assert not (is_discrete and is_contiguous)
        assert is_discrete or is_contiguous

        if is_discrete:
            global_token_ids, semantic_token_ids = self.model.tokenize(audio_path)

            semantic_token_ids = semantic_token_ids[0].cpu().tolist()
            return semantic_token_ids

        if is_contiguous:
            from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank

            audio, sampling_rate = torchaudio.load(audio_path)
            audio = audio.mean(0)
            resampler = torchaudio.transforms.Resample(
                orig_freq=sampling_rate, new_freq=self.sampling_rate
            )
            audio = resampler(audio[None, :])[0, :]
            # audio = audio.to(self.device)

            frontend = self.kwargs["frontend"]

            speech, speech_lengths = extract_fbank(audio, data_type="sound", frontend=frontend)

            speech = speech[0]
            # print(f"{speech_lengths=}")
            # print(f"{speech.size()=}")

            return speech

    def decode(self, prompt_speech_token, source_speech_16k=None):
        if not hasattr(self, "model"):
            self.load_model()

        semantic_token_ids = torch.tensor(prompt_speech_token, dtype=torch.long).unsqueeze(0)
        # print(f"{semantic_token_ids=}")

        if source_speech_16k is None:
            global_token_ids = torch.zeros((1, 1, 32), dtype=torch.long)
        else:
            global_token_ids, _ = self.model.tokenize(source_speech_16k)
        # print(f"{source_speech_16k=}")
        print(f"{global_token_ids=}")

        audio = self.model.detokenize(
            global_token_ids.to(self.device).squeeze(0),
            semantic_token_ids.to(self.device),
        )

        print(f"{audio=}")
        # audio = torch.tensor(audio).unsqueeze(0)
        audio = torch.tensor(audio)

        return audio

    def apply_to_role(self, role, **kwargs):
        is_discrete = kwargs.get("is_discrete", False)
        if is_discrete and role in ["assistant", "gpt"]:
            return True

        is_contiguous = kwargs.get("is_contiguous", False)
        if is_contiguous and role in ["user", "human"]:
            return True

        return False